Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2025

Comparative evaluation of electro-oxidation coupled with UV irradiation (UV/EO) and conventional oxidation processes (UV irradiation, chlorination, electro-oxidation, UV/Chlorine) for atenolol removal: Role of operating parameters, energy performance, and toxicity

Pannika Duangkaew<sup>1</sup>, Songkeart Phattarapattamawong<sup>1</sup>

<sup>1</sup> Department of Environmental Engineering, King Mongkut's University of Technology Thonburi

## **Supplementary information**

Supplementary text-1 •OH and •Cl calculation

Supplementary text-2 Calculation of kinetic degradation rate of ATL by Cl•

**Supplementary figure-1** ATL structure

**Supplementary figure-2** Experimental setup (a) Chlorination, (b) UV irradiation and UV/chlorine, (c) EO process, and (d) UV/EO process

**Supplementary figure-3** Kinetic degradation of ATL by chlorination, UV irradiation, EO, UV/Chlorine, and UV/EO

Supplementary figure-4 Effect of UV lamp on kinetic degradation of ATL in UV/EO

**Supplementary figure-5** The CD profile of UV/EO

Supplementary figure-6 Effect of CD on kinetic degradation of ATL in UV/EO

Supplementary figure-7 Effect of NaCl on kinetic degradation of ATL in UV/EO

**Supplementary figure-8** Effect of phosphate buffer concentration on kinetic degradation of ATL in UV/EO

**Supplementary figure-9** Effect of ATL concentrations on kinetic degradation of ATL in UV/EO

Supplementary figure-10 Effect of pH on kinetic degradation of ATL in UV/EO

## Supplementary text-1 •OH and •Cl calculation

## •OH concentration

$$\frac{d[pCBA]}{dt} = -k_{pCBA - \bullet OH}[\bullet OH][pCBA] \tag{1}$$

Comparing with the pseudo 1st-order equation for pCBA removal,

$$k'_{pCBA} = k_{pCBA - \bullet OH}[\bullet OH]$$
 (2)

where  $^{k}pCBA - \bullet OH$  is the 2<sup>nd</sup>-order reaction rate constant for pCBA with  $\bullet$ OH (5 × 10<sup>9</sup> M<sup>-1</sup>s<sup>-1</sup>) (Rosenfeldt, Linden, Canonica, & von Gunten, 2006).  $k'_{pCBA}$  is the observed kinetic data of pCBA removal (pseudo 1<sup>st</sup>-order degradation rate constant). [ $\bullet$ OH] and [pCBA] are concentrations of  $\bullet$ OH and pCBA, respectively.

Substitute the  $k'_{pCBA}$  of 0.0220 min<sup>-1</sup> or 3.67 × 10<sup>-4</sup> s<sup>-1</sup> in the equation 2,

$$3.67 \times 10^{-4} \text{ s}^{-1} = 5.00 \times 10^{9} \text{ M}^{-1} \text{s}^{-1} \times [\bullet \text{OH}]$$

Thus, [•OH] = 
$$7.34 \times 10^{-14} \text{ M}$$

## **RCS** concentration

$$\frac{d[BA]}{dt} = -(k_{BA-\bullet OH}[\bullet OH] + k_{BA-Cl\bullet}[Cl\bullet]).[BA]$$
 (3)

Comparing with the pseudo 1st-order equation for BA removal,

$$k'_{BA} = k_{BA - \bullet OH}[\bullet OH] + k_{BA - Cl \bullet}[Cl \bullet]$$
(4)

where  ${}^{k}_{BA}$  - •0H, and  ${}^{k}_{BA}$  - Cl• are 2<sup>nd</sup>-order reaction rate constants for BA with •OH (5.9 × 10<sup>9</sup> M<sup>-1</sup>s<sup>-1</sup>) and BA with Cl• (1.8 × 10<sup>10</sup> M<sup>-1</sup>s<sup>-1</sup>), respectively (Wang, Wu, Huang, Wang, & Hu, 2016; Hoang, et al., 2022).  $k'_{BA}$  is the observed kinetic data of BA degradation (pseudo 1<sup>st</sup>-order degradation rate constant). [•OH] and [Cl•] are amount of •OH and Cl•, respectively.

Substitute the  $k'_{BA}$  of 0.0286 min<sup>-1</sup> or 4.77 × 10<sup>-4</sup> s<sup>-1</sup> in the equation 4,

$$4.77\times 10^{\text{-4}}~\text{s}^{\text{-1}} \qquad = \quad (5.90\times 10^9~\text{M}^{\text{-1}}\text{s}^{\text{-1}})~(7.34\times 10^{\text{-14}}~\text{M}) + 1.80\times 10^{10}~\text{M}^{\text{-1}}\text{s}^{\text{-1}}[\text{Cl}\bullet]$$

Thus, 
$$[C1^{\bullet}]$$
 =  $2.42 \times 10^{-15} \text{ M}$ 

**Supplementary text-2** Calculation of kinetic degradation rate of ATL by Cl•  $(k_{ATL-Cl•})$ 

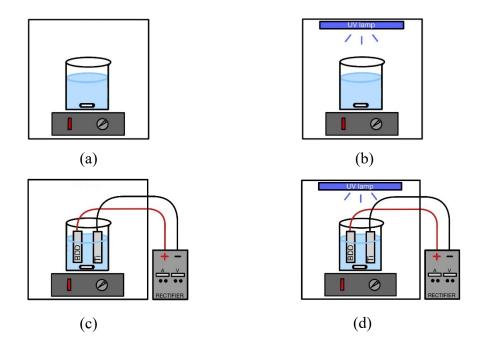
$$\frac{d[ATL]}{dt} = -(k_{\cdot OH}[\bullet OH] + k_{Cl}[Cl\bullet] + k_{FAC}[FAC] + k_{UV}[\Phi I])[ATL]$$
 (5)

Comparing with the pseudo 1st-order kinetic model of ATL removal,

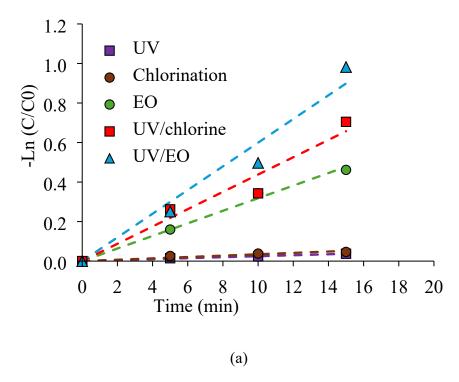
$$k'_{UV/EO-ATL} = k_{\bullet OH}[\bullet OH] + k_{CI\bullet}[CI\bullet] + k_{FAC}[FAC] + k_{UV}[\Phi \epsilon I]$$
 (6)

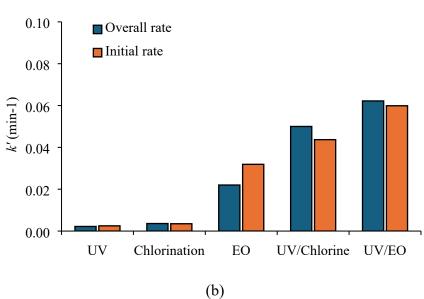
$$k'_{FAC-ATL} = k_{FAC}[FAC]$$
 (7)

$$k'_{UV-ATL} = k_{UV}[\Phi \varepsilon I]$$
 (8)

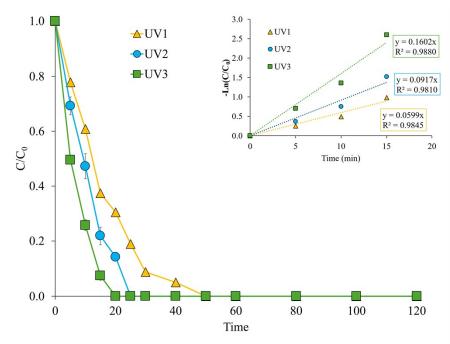

where  $k'_{UV/EO\text{-}ATL}$ ,  $k'_{FAC\text{-}ATL}$ , and  $k'_{UV\text{-}ATL}$  are the observed kinetic data of ATL degradation by the UV/EO process, chlorination, and UV irradiation, respectively.  $k_{\bullet OH}$ ,  $k_{Cl\bullet}$ ,  $k_{FAC}$ , and  $k_{UV}$  are  $2^{\text{nd}}$  order reaction rate constants of ATL to  $\bullet$ OH, Cl $\bullet$ , FAC, and UV light, respectively.  $[\bullet OH]$ ,  $[Cl\bullet]$ , and [FAC] are concentrations of  $\bullet$ OH, Cl $\bullet$ , and FAC, respectively.  $\Phi$ ,  $\epsilon$ , and I are quantum yield of ATL, molar absorption of ATL, and the UV fluence rate, respectively.

From the supplementary figure-1,  $k'_{UV/EO-ATL}$ ,  $k'_{UV-ATL}$ , and  $k'_{FAC-ATL}$  were 0.0599 min<sup>-1</sup> (9.98 × 10<sup>-4</sup> s<sup>-1</sup>), 0.0025 min<sup>-1</sup> (4.17 × 10<sup>-5</sup> s<sup>-1</sup>), 0.0035 min<sup>-1</sup> (5.83 × 10<sup>-5</sup> s<sup>-1</sup>), respectively.  $k_{*OH-ATL}$  was 7.10 × 10<sup>9</sup> M<sup>-1</sup>s<sup>-1</sup> (Wols, Harmsen, Beerendonk, & Hofman-Caris, 2014). Substitute all values in the equation 6;

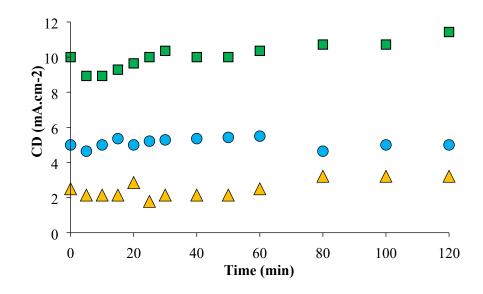

$$9.98 \times 10^{-4} \text{ s}^{-1} = (7.10 \times 10^{9} \text{ M}^{-1} \text{s}^{-1}) (7.34 \times 10^{-14} \text{ M}) + k_{Cl} \cdot (2.42 \times 10^{-15} \text{ M}) + (5.83 \times 10^{-5} \text{ s}^{-1}) + (4.17 \times 10^{-5} \text{ s}^{-1})$$


$$k_{Cl} \cdot ATL = 1.55 \times 10^{11} \text{ M}^{-1} \text{s}^{-1}$$

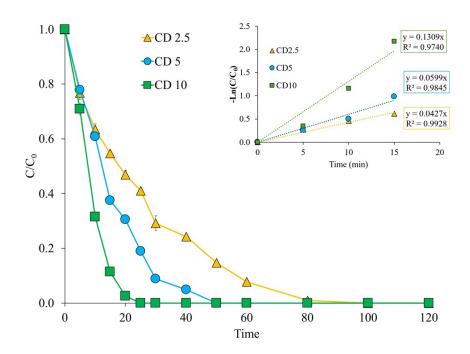
Supplementary figure-1 ATL structure



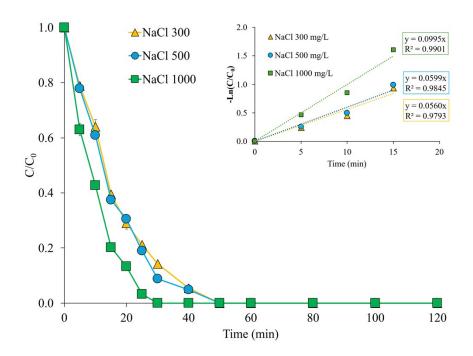

**Supplementary figure-2** Experimental setup (a) Chlorination, (b) UV irradiation and UV/chlorine, (c) EO process, and (d) UV/EO process



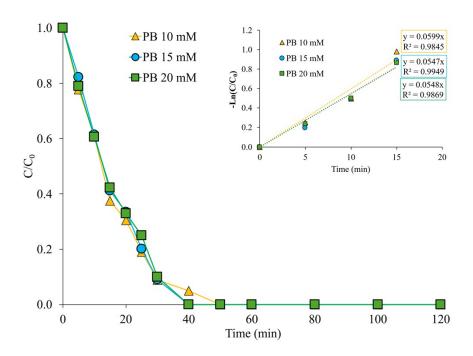




**Supplementary figure-3** Kinetic ATL degradation by the initial rate method (a) and overall rate (b) for chlorination, UV irradiation, EO, UV/Chlorine, and UV/EO

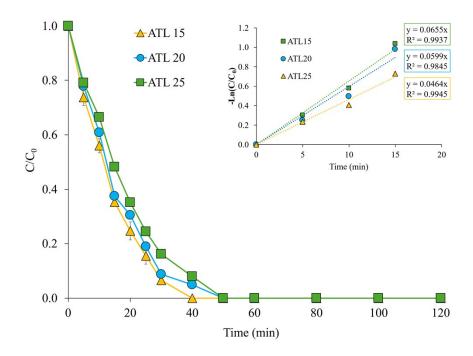



**Supplementary figure-4** Effect of UV lamp on kinetic degradation of ATL in UV/EO

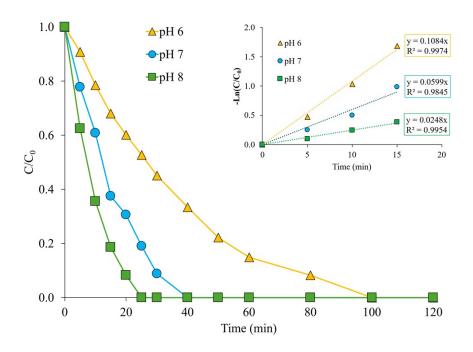



**Supplementary figure-5** The CD profile of UV/EO




Supplementary figure-6 Effect of CD on kinetic degradation of ATL in UV/EO




Supplementary figure-7 Effect of NaCl on kinetic degradation of ATL in UV/EO



**Supplementary figure-8** Effect of phosphate buffer concentration on kinetic degradation of ATL in UV/EO



Supplementary figure-9 Effect of ATL concentrations on kinetic degradation of ATL in UV/EO



Supplementary figure-10 Effect of pH on kinetic degradation of ATL in UV/EO