Supplementary Information

$\label{eq:continuous} Thermo-sensitive \ C_3N_4 \ for \ Efficient \ Photocatalytic \ Degradation \ of \ Methyl$ Orange

Xuefeng Zhu,^{‡a} Shikai Xue,^{‡a,b} Pingyuan Xie,^a Qingxian Xu,^a Yingxin Liu,^a Chengyong Li,^{a,*} Qiujun Lu,^{a,*}

- a. College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China.
- b. College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China

E-mail address: lyong92@163.com (Chengyong Li); luqiujun@ccsu.edu.cn (Qiujun Lu)

[‡] Co-first authorship.

^{*}Corresponding author

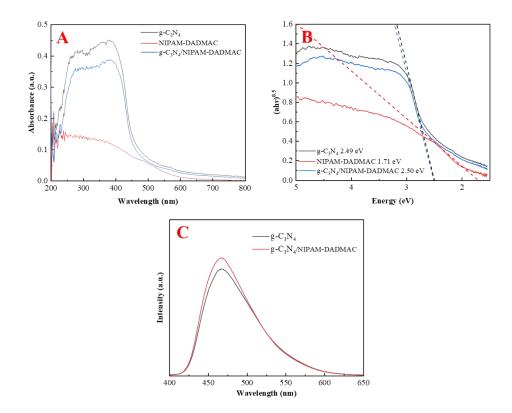


Figure S1 (A) UV-vis diffuse reflection spectra of g- C_3N_4 , NIPAM-DADMAC, and g- C_3N_4 /NIPAM-DADMAC, (B) corresponding Tauc plots. (C) Photoluminescence spectra of g- C_3N_4 and g- C_3N_4 /NIPAM-DADMAC.

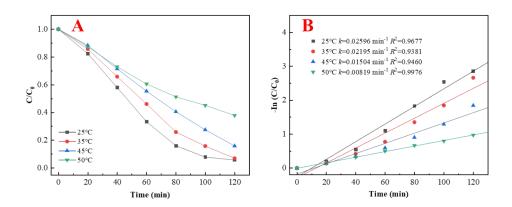


Figure S2 (A)Rhodamine B degradation rate curve, and (B) corresponding photodegradation kinetic curve for g- $C_3N_4/NIPAM$ -DADMAC at different degradation temperatures.

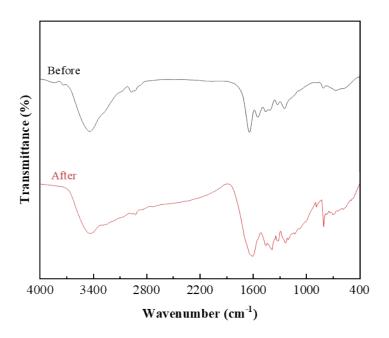


Figure S3 FTIR spectra of g-C $_3$ N $_4$ /NIPAM-DADMAC before and after 8 cycles of use.

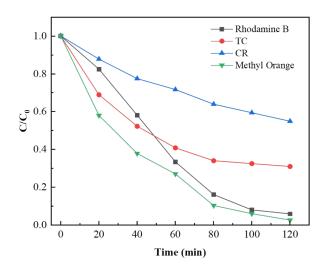


Figure S4 Degradation rate of different pollutants on g-C $_3$ N $_4$ /NIPAM-DADMAC.