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Fig. S3. Feature importance derived from the Random Forest Regressor model for Cr(VI)

adsorption prediction.



Table S1. The porosity of the biochar samples synthesized from YDF using the pyrolysis

method.
Sample Yield | Pyrolysis | Sger® | Smicro (Micropore area) Sext® Pore volume | Pore size
P (%) | condition | (m?/g) (m?/g) (m?/g) (cm?/g) (nm)
BC-YDF-550 | 31.65 550°C | 142.86 113.63 29.23 0.099 2.89
BC-YDF-650 | 27.32 650 °C | 415.76 346.69 69.07 0.235 2.51
BC-YDF-750 | 22.55 750 °C | 529.94 389.90 140.04 0.297 2.11

“Calculated with the BET model. ®*Determined by the t-plot method, Se = Sger— Smicro- Yield = [(Myioehar/ Mpiomass) X 100%] [1]




Table S2. The porosity of the biochar samples synthesized from YDF using the pyrolysis

method.

Biomass source Elements components of biochar Refs
Young durian fruit C O |Mg| Si| P S | K | Ca | Na | This study
Corncob C 0 Si | P K [2]

Jackfruit peel C O Si | P K | Ca [3]
Pomelo fruit peel C (0] P K | Ca [4]
Rice husk C (0) S [5]




Table S3. ANOVA Analysis for effect of pH

pH Count Sum Average Variance
2 3 82.85 27.61667 1.396033
3 3 47.86 1595333 0.000133
4 3 18.84 6.28 0.5628
5 3 11.478 3.826 0.009868
6 3 7.2 2.4 1.4284
7 3 6.12 2.04 0.6492
8 3 5.64 1.88 0.1924
9 3 4.98 1.66 0.0156
10 3 3.58 1.193333 0.208133
11 3 2.8 0.933333 0.688933
ANOVA
Source of
Variation SS df MS F P-value F crit
Between Groups 2048.849 9 227.6499 441.9098 5.3E-21 2.392814
Within Groups 10.303 20  0.51515

Total 2059.152 29




Table S4. ANOVA Analysis for effect of adsorption time

Time (mins) Count Sum Average Variance

5 51.2 17.06667 2.439877

W

10 3 42.016 14.00533 9.963449
15 3 54.856  18.28533 1.074369
30 3 67.994 22.66467 6.698177
45 3 70.518 23.506  2.833948
60 3 7628 2542667 1.259377
90 3 81.742 27.24733 0.930581
120 3 86.984  28.99467 4.283301
150 3 89.304 29.768  0.899568
180 3 89.876  29.95867 0.093333
210 3 90.22  30.07333 0.157781
240 3 90.962 30.32067 0.168033
270 3 91.572 30.524 0.16
300 3 91.51  30.50333 0.032533
330 3 91.564 30.52133 0.032533
ANOVA
Source of
Variation SS df MS F P-value F crit
Between Groups 1312.866 14 93.77614 45.33627 2.75E-16 2.03742
Within Groups 62.05373 30 2.068458

Total 1374.92 44




Table S5. ANOVA Analysis for effect of sorbent dosage

Sorbe;;(tg)dosage Count Sum Average Variance
0.05 3 107.64 35.88 0.0064
0.075 3 95.86  31.95333 0.000833
0.1 3 81.89  27.29667 0.351433
0.125 3 75.918 25306  0.859116
0.15 3 71.9 23.96667 0.265233
ANOVA
Source of
Variation SS df MS F P-value Fcrit
Between Groups  293.5999 4 7339998 247.4686 5.95E-10 3.47805
Within Groups 2.966032 10 0.296603
Total 296.566 14




Table S6. ANOVA Analysis for effect of ionic strength

Ii(;fo?/)f)c' Count Sum Average Variance
0 3 88.97  29.65667 0.333333
0.05 3 83.65  27.88333 3.33E-05
0.1 3 78.97  26.32333 0.333333
0.2 3 71.95  23.98333 3.33E-05
0.3 3 62.96  20.98667 0.255033
0.4 3 96.19  32.06333 595.6084
Conc. =
concentration
ANOVA
Source of
Variation SS df MS F P-value F crit
Between Groups  236.9728 5 47.39457 0.476702 0.787 3.105875
Within Groups 1193.06 12 994217
Total 1430.033 17
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Fig. S4. Comparison of experimental and predicted adsorption capacities of Cr(VI) onto BC-
YDF using the Random Forest Regressor model.
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Fig. S5. Validation of the Random Forest Regressor (RFR) model using an independent test set:

comparison between experimental and predicted Cr(VI) adsorption capacities (Q.).



Table S7. Comparative performance of Al models for predicting Cr(VI) adsorption kinetics

onto BC-YDF.
Model R? RMSE (mg/g) )
Random Forest Regressor 0.933553 1.327498 0.357286
Support Vector Regression (SVR) 0.451861 3.81278 2.845217
Gradient Boosting Regressor (XGBoost) 0.933862 1.324404 0.419237
Neural Network (MLPRegressor) 0.526028 3.545462 2.579738




Table S8. Canonical kinetic models, parameter definitions, and fit diagnostics.

Rate_equati . . . Primary re
= Integrated_ | Linearized_for | Key parame | Physical assu =
Model on (dqt/dt form m (if used) ters mptions ference
form) (Year)
1 Boundary-
Pseudo- dq, k1 (%) layer Lagergren
First-Order | — = k1 (g, 9= 9.(1 - ¢ log(q, - q,) =1d mg controlled; (%89g8)
(PFO) dt qe(—) physisorption-
4 dominant
g . Chemisorption
Pseudo- dq, (k2 ql t k2 (m_g.mm) /valence Ho &
Second- —=k2(q,1 %=1 4 1, .2 m forces; McKay
Order (PSO) | 4t ¢ (1 + kg 9 k2q, 9e qe(—‘g) rate o vacant | (1999)
’ 9 sites
mg Heterogeneous
dq, 1 @ (—-mln) surface; Chien &
Elovich —— = qexp ( q,= (—)ln 1+ ap?) g g activation- Clayton
dt b (—) energy (1980)
mg distribution
K id (mg .
_id (——min i
Intraparticle Diffusion = k%54 C g Ing?fl? arpcle Weber.&
(Weber—Morris) 4= Xia mg crtusion Morris
c (?) limits rate (1963)
Film vs
q e — _ B B ; B.F particle Boyd et al.
Boyd Film-Diffusion B, 0.4977 -In (1 - F)wit ¢ diffusion (1947)

control




Table S9. Baseline machine-learning models, search spaces, and selected hyperparameters.

Model SVR (RBF) XGBoost ANN (MLP)
Preprocessin | Pipeline: Raw features (no scaling); Pipeline:
g StandardScaler—SV | early stopping in inner CV if applicable | StandardScaler—MLP
R (leakage-safe (ReLU);
within CV) early stopping
Search_spac | C€[0.1,100]; n_estimators€[200,1200]; hidden layer sizes€{(64,64),(
es €€[1e-3,0.5]; learning_rate€[0.01,0.3]; 128,64),(128,64,32)};

YE{scale,[1e-4,1]}

max_depth€[3,9]; subsample€[0.6,1.0];
colsample_bytree€[0.6,1.0];

min_child weight€[1,7];
reg_alpha€[0,1];

reg_lambda€[0,3]

activation€ {relu,tanh};
alpha€[le-6,1e-2];
Ir_init€[le-4,5¢e-3];

batch size€{16,32,64};
max_iter€[500,3000];

carly stopping€{True,False}

Selected_hy | C=10; n_estimators=500; hidden_layer sizes=(128,64);
perparamete | £=0.10; learning_rate=0.05; activation=relu;
rs y=scale max_depth=5; alpha=le-4;
subsample=0.8; colsample bytree=0.8; | Ir_init=1e-3;
min_child weight=1; batch_size=32;
reg_alpha=0.0; max_iter=2000;
reg lambda=1.0 early stopping=True
CV_protocol | Nested CV (5x5) with | Nested CV (5x5) with stratification by Nested CV (5x5) with
stratification by CO; Co; stratification by CO0;

external 30% test

external 30% test

external 30% test

External_tes

RMSE > 3.5 mg/g;

R2 =10.9338 (test);

RMSE > 3.5 mg/g;

t_metrics R2 <0.53 (per Table | RMSE —; R2 < 0.53 (per Table S8);
(RMSE/MA | S8); x2 — (see SI Table S8) 12—
E/R2/chi2) | y2 —
Seed 2025 2025 2025
Notes Underperformed Comparable R2 to RFR but larger Consistently underperformed;

relative to tree
ensembles; see SI
Table S8 for fold-
wise stats

residual variance per manuscript

limited capacity for nonlinear
interactions with small-N
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Fig. S6. Representative nonlinear fits of adsorption kinetics (Tt vs time).
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Fig. S7. Residuals versus time for kinetic fits.
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Fig. S8. Residual distributions for kinetic fits.
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Fig. S9. Schematic overview of baseline algorithms and evaluation protocol.



Table S10. External literature datasets for cross-study predictivity of the RFR: metadata and
performance metrics (zero-shot vs adapter-calibrated).

Study_ID ext Hu2024 PCNi3 ext Dahiya2023 RSB ext Naseem2022 GO
DOI_or_URL DOI: TBD (chestnut-shell DOI: TBD DOI: TBD (graphene oxide /
biochar PC/PCNi3) (reduced/oxidized rice- | rGO—ZnO nanocomposite)
straw biochar)
Material Chestnut-shell biochar (PC) Rice-straw biochar Graphene oxide and rGO-ZnO
and Ni-doped PCNi3 (reduced/oxidized nanocomposite
variants)
Material_Class Biochar (activated/doped) Biochar (modified) Carbon-based nanocomposite
pHpzc (if reported) | TBD TBD TBD
pH_range ~2-8 (TBD) ~2-9 (TBD) ~2-7 (TBD)
Ionic_strength_range | 0-0.10 (TBD) 0-0.05 (TBD) 0-0.05 (TBD)
(7))
CO0_range (mg/L) 10-100 (TBD) 10-200 (TBD) 5-100 (TBD)
Dosage_range (g/L) | 0.5-5 (TBD) 0.5-4 (TBD) 0.25-2 (TBD)
Time_range (min) 0-240 (TBD) 0-180 (TBD) 0-180 (TBD)

Notes_on_extraction

Axis calibration at two ticks;
cross-check with table if

available

Use same symbol set
across panels; verify
legend

Check for multiple ionic
backgrounds; note buffer
composition




20

151

Predicted Q (mg g~1)

(‘J El_) 1ID 1I5 2I0 2I5 3I0
Observed Q (mg g~1)

Fig. S10. Parity plots (observed vs predicted Q) for external studies under zero-shot and adapter
modes.
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Fig. S12. Kinetic overlays (Qt—time) comparing literature curves and RFR predictions across
zero-shot and adapter modes.
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Fig. S13. Partial Dependence (PD) of predictors on adsorption capacity Qe

In Fig. S13, (a) pH, (b) ionic strength K, (¢) initial concentration CO, (d) dosage, (e) contact time

t. Partial dependence (PD) plots quantify the marginal effect of each predictor on the predicted
-1

adsorption capacity Qe (mg 9 ), using a Random Forest (RF) surrogate trained on Dataset S1.

For each panel, the focal variable varies across its observed range while all other variables are

fixed at their median. (a) pH: QEdecreases monotonically with pH, consistent with reduced
electrostatic attraction to anionic chromate species at higher pH relative to the biochar surface

charge. (b) Ionic strength (#): Q6declines with increasing M, indicating screening of electrostatic
interactions and competition from background electrolyte. (c) CO: Qé’increases with COand

approaches a plateau, consistent with site saturation (Langmuir-like behavior). (d) Dosage: a mild
negative dependence (per-gram capacity) as dosage increases, attributable to site

overlap/aggregation and reduced driving force per unit mass at fixed CO. (e) Time: Qeincreases
rapidly at short times and then asymptotically approaches equilibrium, matching typical adsorption
kinetics.
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Fig. S14. Accumulated Local Effects (ALE) for main effects on Qe

In Fig. S14, (a) pH, (b) ionic strength X, (c) initial concentration CO, (d) dosage, (e) contact time
. One-dimensional ALE curves describe localized, conditional effects while mitigating
extrapolation bias. Effects are reported in centered units (mean ALE = 0), so vertical offsets
represent relative contributions. (a) pH: a consistently negative ALE with increasing pH confirms
the adverse effect of alkalinity on capacity. (b) #: ALE is negative and steepest at low-to-moderate
K, reflecting strong sensitivity to electrolyte screening when moving away from deionized

conditions. (c) CO: positive ALE with diminishing returns at high CO, consistent with progressive
site saturation. (d) Dosage: slightly negative ALE, supporting a per-gram capacity penalty at
higher mass loadings. (e) Time: positive ALE with an asymptote, indicating approach to
equilibrium; the steep initial rise captures the fast kinetic regime.
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In Fig. S15, (a) pH x ionic strength X, (b) pH x time ¢. Two-dimensional ALE heatmaps show

how pairs of variables jointly shape Qe. Values are centered to zero for interpretability. (a) pH %
H: the most favorable region is at low pH and low ¥; the negative effect of pH intensifies as
Hincreases, evidencing synergistic deterioration of capacity when both alkalinity and electrolyte
screening rise. (b) pH X time: increasing time attenuates the detrimental impact of higher pH as
the system approaches equilibrium; at shorter times, adsorption is more pH-sensitive, while at long
times the surface approaches near-saturation across pH, flattening the response. These interactions
are chemically consistent with electrostatic mechanisms (pH, #) modulating rates and apparent
equilibria.
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a ICE (stratified by pH): pH:(4.205, 6.275) b ICE (stratified by pH): pH:(6.275, 7.998] C ICE (stratified by pH): pH:(2.009, 4.205]
10}

Fig. S16. Stratified ICE curves by pH tertiles (feature varied: pH)
In Fig. S16, (a—) three pH tertiles (low — high). Individual Conditional Expectation (ICE) curves

display instance-level trajectories of predicted Qe as pH varies, stratified by pH tertiles to
emphasize heterogeneity in local response. Faint lines are per-sample ICE; bold lines show the

stratum-wise mean. Lower-pH strata exhibit higher levels of Qeacross the varied pH range and
weaker dispersion near acidic conditions, indicating consistently favorable adsorption. In higher-
pH strata, both the mean and upper envelope of ICE curves drop, confirming stronger sensitivity
to pH in alkaline contexts. The stratified means parallel the PD/ALE results while revealing within-
stratum variability important for local interpretability.
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Fig. S17. Stratified ICE curves by dosage tertiles (feature varied: pH)

In Fig. S17, (a—c) three dosage tertiles (low — high). ICE curves are computed as pH varies within
dosage tertiles. At low dosage, per-gram capacity is larger and pH sensitivity is pronounced
(steeper decline as pH increases). At higher dosage, curves shift downward on a per-gram basis
and the mean ICE shows slightly reduced slope, consistent with site crowding/aggregation and the

per-mass normalization of Qe. The combination of S16 and S17 clarifies that pH governs
electrostatic favorability, while dosage modulates effective capacity per unit mass, jointly
controlling the observed performance.
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Fig. S18. SHAP summary (global importance and distribution)

Fig. S18, SHAP-style summary (“beeswarm”) visualizes the global contribution distribution

(SHAP or SHAP-like ¢ values) for each feature on predicted Qe, Features are ordered by mean
absolute contribution, highlighting overall importance. In agreement with domain expectations,

time and Co show strong positive contributions (longer contact and higher driving force), whereas
pH and ionic strength contribute negatively (less favorable electrostatics as these increase). Dosage
typically exerts a mild negative per-gram effect. The horizontal spread reflects heterogeneity
across the dataset (context-dependent effects).
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Fig. S19. SHAP main-effect dependence

In Fig. S19, (a) pH, (b) ionic strength X, (c) CO, (d) dosage, (e) time. Caption: Dependence plots
relate each feature’s value to its SHAP(-like) contribution Pto Qe. (a) pH: contributions become
more negative as pH increases; (b) 4: contributions are more negative at higher X, indicating
electrolyte screening; (c) CO: positive with diminishing marginal gains, tracking saturation; (d)
Dosage: slightly negative per-gram contributions at higher dosage; (¢) Time: positive and
saturating, consistent with approach to equilibrium. These main-effect profiles mirror PD/ALE

trends while reporting additive attributions on a common scale.
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Fig. S20. SHAP pairwise interaction maps

In Fig. S20, (a) pH x ionic strength K, (b) pH x time t, (c) time ¢ x dosage. Interaction
visualizations show how joint feature states redistribute SHAP(-like) contributions. (a) pH x H:
most positive contributions occur at low pH and low &; contributions become increasingly negative
as either pH or Hrises, demonstrating synergistic penalty from alkalinity and screening. (b) pH x
time: increasing time partly offsets the negative pH effect (higher contributions at long teven under
moderate pH), indicating kinetic relief as equilibrium is approached. (c) time x dosage: at longer
times, capacity contributions are positive across dosages, but per-gram gains are attenuated at high
dosage, aligning with the mild negative main effect of dosage. Altogether, SHAP interactions
corroborate the 2D ALE patterns and provide an attributional perspective on coupled controls.
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