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Fig. S1. Random forest model construction process



Fig. S2. Biochar adsorption model: Inputs and Output



Fig. S3. Feature importance derived from the Random Forest Regressor model for Cr(VI) 

adsorption prediction.



Table S1. The porosity of the biochar samples synthesized from YDF using the pyrolysis 
method.

Sample Yield 
(%)

Pyrolysis 
condition

SBET
a

(m2/g)
Smicro (micropore area)

(m2/g)
Sext

b 
(m2/g)

Pore volume
(cm3/g)

Pore size
(nm)

BC-YDF-550 31.65 550 °C 142.86 113.63 29.23 0.099 2.89
BC-YDF-650 27.32 650 °C 415.76 346.69 69.07 0.235 2.51
BC-YDF-750 22.55 750 °C 529.94 389.90 140.04 0.297 2.11

aCalculated with the BET model. bDetermined by the t-plot method, Sext = SBET – Smicro. Yield = [(mbiochar / mbiomass) x 100%] [1]



Table S2. The porosity of the biochar samples synthesized from YDF using the pyrolysis 
method.

Biomass source Elements components of biochar Refs

Young durian fruit C N O Mg Si P S K Ca Na This study
Corncob C O Si P K [2]

Jackfruit peel C O Si P K Ca [3]
Pomelo fruit peel C O P K Ca [4]

Rice husk C N O S [5]



Table S3. ANOVA Analysis for effect of pH

pH Count Sum Average Variance
2 3 82.85 27.61667 1.396033
3 3 47.86 15.95333 0.000133
4 3 18.84 6.28 0.5628
5 3 11.478 3.826 0.009868
6 3 7.2 2.4 1.4284
7 3 6.12 2.04 0.6492
8 3 5.64 1.88 0.1924
9 3 4.98 1.66 0.0156
10 3 3.58 1.193333 0.208133
11 3 2.8 0.933333 0.688933

ANOVA
Source of 
Variation SS df MS F P-value F crit

Between Groups 2048.849 9 227.6499 441.9098 5.3E-21 2.392814
Within Groups 10.303 20 0.51515

Total 2059.152 29     



Table S4. ANOVA Analysis for effect of adsorption time

Time (mins) Count Sum Average Variance
5 3 51.2 17.06667 2.439877
10 3 42.016 14.00533 9.963449
15 3 54.856 18.28533 1.074369
30 3 67.994 22.66467 6.698177
45 3 70.518 23.506 2.833948
60 3 76.28 25.42667 1.259377
90 3 81.742 27.24733 0.930581
120 3 86.984 28.99467 4.283301
150 3 89.304 29.768 0.899568
180 3 89.876 29.95867 0.093333
210 3 90.22 30.07333 0.157781
240 3 90.962 30.32067 0.168033
270 3 91.572 30.524 0.16
300 3 91.51 30.50333 0.032533
330 3 91.564 30.52133 0.032533

ANOVA
Source of 
Variation SS df MS F P-value F crit

Between Groups 1312.866 14 93.77614 45.33627 2.75E-16 2.03742
Within Groups 62.05373 30 2.068458

Total 1374.92 44     



Table S5. ANOVA Analysis for effect of sorbent dosage

Sorbent dosage 
(g) Count Sum Average Variance

0.05 3 107.64 35.88 0.0064
0.075 3 95.86 31.95333 0.000833
0.1 3 81.89 27.29667 0.351433

0.125 3 75.918 25.306 0.859116
0.15 3 71.9 23.96667 0.265233

ANOVA
Source of 
Variation SS df MS F P-value F crit

Between Groups 293.5999 4 73.39998 247.4686 5.95E-10 3.47805
Within Groups 2.966032 10 0.296603

Total 296.566 14     



Table S6. ANOVA Analysis for effect of ionic strength

KCl conc. 
(mol/L) Count Sum Average Variance

0 3 88.97 29.65667 0.333333
0.05 3 83.65 27.88333 3.33E-05
0.1 3 78.97 26.32333 0.333333
0.2 3 71.95 23.98333 3.33E-05
0.3 3 62.96 20.98667 0.255033
0.4 3 96.19 32.06333 595.6084

Conc. = 
concentration

ANOVA
Source of 
Variation SS df MS F P-value F crit

Between Groups 236.9728 5 47.39457 0.476702 0.787 3.105875
Within Groups 1193.06 12 99.4217

Total 1430.033 17     

  



Fig. S4. Comparison of experimental and predicted adsorption capacities of Cr(VI) onto BC-

YDF using the Random Forest Regressor model.



Fig. S5. Validation of the Random Forest Regressor (RFR) model using an independent test set: 

comparison between experimental and predicted Cr(VI) adsorption capacities (Qₑ).



 Table S7. Comparative performance of AI models for predicting Cr(VI) adsorption kinetics 

onto BC-YDF.

Model R² RMSE (mg/g) χ²
Random Forest Regressor 0.933553 1.327498 0.357286
Support Vector Regression (SVR) 0.451861 3.81278 2.845217
Gradient Boosting Regressor (XGBoost) 0.933862 1.324404 0.419237
Neural Network (MLPRegressor) 0.526028 3.545462 2.579738



Table S8. Canonical kinetic models, parameter definitions, and fit diagnostics.

Model
Rate_equati
on (dqt/dt 

form)

Integrated_
form

Linearized_for
m (if used)

Key_parame
ters

Physical_assu
mptions

Primary_re
ference 
(Year)

Pseudo-
First-Order 

(PFO)

𝑑𝑞𝑡

𝑑𝑡
=  𝑘1 (𝑞𝑒 ‒  𝑞𝑡)𝑞𝑡 =  𝑞𝑒(1 ‒ exp ( ‒ 𝑘1 𝑡))log (𝑞𝑒 ‒  𝑞𝑡) = log 𝑞𝑒 ‒  ( 𝑘1

2.303)𝑡
𝑘1 ( 1

𝑚𝑖𝑛),

𝑞𝑒(𝑚𝑔
𝑔 )

Boundary-
layer 

controlled;
 physisorption-

dominant

Lagergren 
(1898)

Pseudo-
Second-

Order (PSO)

𝑑𝑞𝑡

𝑑𝑡
=  𝑘2 (𝑞𝑒 ‒  𝑞𝑡)2𝑞𝑡 =

(𝑘2 𝑞2
𝑒𝑡)

(1 +  𝑘2 𝑞𝑒𝑡)
𝑡
𝑞𝑡

=
1

𝑘2 𝑞2
𝑒

+
𝑡

𝑞𝑒

𝑘2 (
𝑔

𝑚𝑔
·𝑚𝑖𝑛)

, 
𝑞𝑒(𝑚𝑔

𝑔 )
Chemisorption

/valence 
forces; 

rate ∝ vacant 
sites

Ho & 
McKay 
(1999)

Elovich
𝑑𝑞𝑡

𝑑𝑡
=  𝛼exp ( ‒ 𝛽 𝑞𝑡)𝑞𝑡 = (1

𝛽)ln (1 +  𝛼 𝛽 𝑡)  
𝛼 (𝑚𝑔

𝑔
·𝑚𝑖𝑛)

( 𝑔
𝑚𝑔)

Heterogeneous 
surface; 

activation-
energy 

distribution

Chien & 
Clayton 
(1980)

Intraparticle Diffusion 
(Weber–Morris) 𝑞𝑡 =  𝑘𝑖𝑑𝑡0.5 +  𝐶

𝑘_𝑖𝑑 (
𝑚𝑔
𝑔

·𝑚𝑖𝑛^0.5  )

, 
𝐶 (

𝑚𝑔
𝑔

)

Intraparticle 
diffusion 
limits rate

Weber & 
Morris 
(1963)

Boyd Film-Diffusion 𝐵𝑡 =  ‒ 0.4977 ‒ ln (1 ‒  𝐹)𝑤𝑖𝑡ℎ 𝐹 =
𝑞𝑡

𝑞𝑒
𝐵𝑡, 𝐹

Film vs 
particle 

diffusion 
control

Boyd et al. 
(1947)



Table S9. Baseline machine-learning models, search spaces, and selected hyperparameters.

Model SVR (RBF) XGBoost ANN (MLP)
Preprocessin

g
Pipeline: 
StandardScaler→SV
R (leakage-safe 
within CV)

Raw features (no scaling); 
early stopping in inner CV if applicable

Pipeline: 
StandardScaler→MLP 
(ReLU); 
early stopping

Search_spac
es

C∈[0.1,100]; 
ε∈[1e-3,0.5]; 
γ∈{scale,[1e-4,1]}

n_estimators∈[200,1200]; 
learning_rate∈[0.01,0.3]; 
max_depth∈[3,9]; subsample∈[0.6,1.0]; 
colsample_bytree∈[0.6,1.0]; 
min_child_weight∈[1,7]; 
reg_alpha∈[0,1]; 
reg_lambda∈[0,3]

hidden_layer_sizes∈{(64,64),(
128,64),(128,64,32)}; 
activation∈{relu,tanh}; 
alpha∈[1e-6,1e-2]; 
lr_init∈[1e-4,5e-3]; 
batch_size∈{16,32,64}; 
max_iter∈[500,3000]; 
early_stopping∈{True,False}

Selected_hy
perparamete

rs

C=10; 
ε=0.10; 
γ=scale

n_estimators=500; 
learning_rate=0.05; 
max_depth=5;
subsample=0.8; colsample_bytree=0.8; 
min_child_weight=1; 
reg_alpha=0.0; 
reg_lambda=1.0

hidden_layer_sizes=(128,64); 
activation=relu; 
alpha=1e-4; 
lr_init=1e-3; 
batch_size=32; 
max_iter=2000; 
early_stopping=True

CV_protocol Nested CV (5×5) with 
stratification by C0;
external 30% test

Nested CV (5×5) with stratification by 
C0; 
external 30% test

Nested CV (5×5) with 
stratification by C0; 
external 30% test

External_tes
t_metrics 

(RMSE/MA
E/R2/chi2)

RMSE > 3.5 mg/g; 
R2 < 0.53 (per Table 
S8); 
χ2 —

R2 = 0.9338 (test); 
RMSE —; 
χ2 — (see SI Table S8)

RMSE > 3.5 mg/g; 
R2 < 0.53 (per Table S8); 
χ2 —

Seed 2025 2025 2025
Notes Underperformed 

relative to tree 
ensembles; see SI 
Table S8 for fold-
wise stats

Comparable R2 to RFR but larger 
residual variance per manuscript

Consistently underperformed; 
limited capacity for nonlinear 
interactions with small-N



Fig. S6. Representative nonlinear fits of adsorption kinetics (  vs time).𝑞𝑡​



Fig. S7. Residuals versus time for kinetic fits.



Fig. S8. Residual distributions for kinetic fits.



Fig. S9. Schematic overview of baseline algorithms and evaluation protocol.

.



Table S10. External literature datasets for cross-study predictivity of the RFR: metadata and 
performance metrics (zero-shot vs adapter-calibrated).

Study_ID ext_Hu2024_PCNi3 ext_Dahiya2023_RSB ext_Naseem2022_GO
DOI_or_URL DOI: TBD (chestnut-shell 

biochar PC/PCNi3)
DOI: TBD 
(reduced/oxidized rice-
straw biochar)

DOI: TBD (graphene oxide / 
rGO–ZnO nanocomposite)

Material Chestnut-shell biochar (PC) 
and Ni-doped PCNi3

Rice-straw biochar 
(reduced/oxidized 
variants)

Graphene oxide and rGO–ZnO 
nanocomposite

Material_Class Biochar (activated/doped) Biochar (modified) Carbon-based nanocomposite
pHpzc (if reported) TBD TBD TBD

pH_range ~2–8 (TBD) ~2–9 (TBD) ~2–7 (TBD)
Ionic_strength_range 

(M)
0–0.10 (TBD) 0–0.05 (TBD) 0–0.05 (TBD)

C0_range (mg/L) 10–100 (TBD) 10–200 (TBD) 5–100 (TBD)
Dosage_range (g/L) 0.5–5 (TBD) 0.5–4 (TBD) 0.25–2 (TBD)
Time_range (min) 0–240 (TBD) 0–180 (TBD) 0–180 (TBD)

Notes_on_extraction Axis calibration at two ticks; 
cross-check with table if 
available

Use same symbol set 
across panels; verify 
legend

Check for multiple ionic 
backgrounds; note buffer 
composition



Fig. S10. Parity plots (observed vs predicted ) for external studies under zero-shot and adapter 𝑄
modes.



Fig. S11. Error distributions for external studies (prediction error histograms/violins with RMSE, 
MAE, R2, reduced χ2 annotations)



Fig. S12. Kinetic overlays ( –time) comparing literature curves and RFR predictions across 𝑄𝑡

zero-shot and adapter modes.



Fig. S13. Partial Dependence (PD) of predictors on adsorption capacity 𝑄𝑒

In Fig. S13, (a) pH, (b) ionic strength , (c) initial concentration , (d) dosage, (e) contact time 𝜇 𝐶0

. Partial dependence (PD) plots quantify the marginal effect of each predictor on the predicted 𝑡

adsorption capacity (mg ), using a Random Forest (RF) surrogate trained on Dataset S1. 𝑄𝑒 𝑔 ‒ 1

For each panel, the focal variable varies across its observed range while all other variables are 
fixed at their median. (a) pH: decreases monotonically with pH, consistent with reduced 𝑄𝑒

electrostatic attraction to anionic chromate species at higher pH relative to the biochar surface 
charge. (b) Ionic strength ( ): declines with increasing , indicating screening of electrostatic 𝜇 𝑄𝑒 𝜇

interactions and competition from background electrolyte. (c) : increases with and 𝐶0 𝑄𝑒 𝐶0

approaches a plateau, consistent with site saturation (Langmuir-like behavior). (d) Dosage: a mild 
negative dependence (per-gram capacity) as dosage increases, attributable to site 
overlap/aggregation and reduced driving force per unit mass at fixed . (e) Time: increases 𝐶0 𝑄𝑒

rapidly at short times and then asymptotically approaches equilibrium, matching typical adsorption 
kinetics.



Fig. S14. Accumulated Local Effects (ALE) for main effects on 𝑄𝑒

In Fig. S14, (a) pH, (b) ionic strength , (c) initial concentration , (d) dosage, (e) contact time 𝜇 𝐶0

. One-dimensional ALE curves describe localized, conditional effects while mitigating 𝑡
extrapolation bias. Effects are reported in centered units (mean ALE = 0), so vertical offsets 
represent relative contributions. (a) pH: a consistently negative ALE with increasing pH confirms 
the adverse effect of alkalinity on capacity. (b) : ALE is negative and steepest at low-to-moderate 𝜇

, reflecting strong sensitivity to electrolyte screening when moving away from deionized 𝜇

conditions. (c) : positive ALE with diminishing returns at high , consistent with progressive 𝐶0 𝐶0

site saturation. (d) Dosage: slightly negative ALE, supporting a per-gram capacity penalty at 
higher mass loadings. (e) Time: positive ALE with an asymptote, indicating approach to 
equilibrium; the steep initial rise captures the fast kinetic regime.



Fig. S15. Two-dimensional ALE (interaction structure)

In Fig. S15, (a) pH × ionic strength , (b) pH × time . Two-dimensional ALE heatmaps show 𝜇 𝑡

how pairs of variables jointly shape . Values are centered to zero for interpretability. (a) pH × 𝑄𝑒

: the most favorable region is at low pH and low ; the negative effect of pH intensifies as 𝜇 𝜇
increases, evidencing synergistic deterioration of capacity when both alkalinity and electrolyte 𝜇

screening rise. (b) pH × time: increasing time attenuates the detrimental impact of higher pH as 
the system approaches equilibrium; at shorter times, adsorption is more pH-sensitive, while at long 
times the surface approaches near-saturation across pH, flattening the response. These interactions 
are chemically consistent with electrostatic mechanisms (pH, ) modulating rates and apparent 𝜇
equilibria.



Fig. S16. Stratified ICE curves by pH tertiles (feature varied: pH)

In Fig. S16, (a–c) three pH tertiles (low → high). Individual Conditional Expectation (ICE) curves 
display instance-level trajectories of predicted  as pH varies, stratified by pH tertiles to 𝑄𝑒

emphasize heterogeneity in local response. Faint lines are per-sample ICE; bold lines show the 
stratum-wise mean. Lower-pH strata exhibit higher levels of across the varied pH range and 𝑄𝑒

weaker dispersion near acidic conditions, indicating consistently favorable adsorption. In higher-
pH strata, both the mean and upper envelope of ICE curves drop, confirming stronger sensitivity 
to pH in alkaline contexts. The stratified means parallel the PD/ALE results while revealing within-
stratum variability important for local interpretability.



Fig. S17. Stratified ICE curves by dosage tertiles (feature varied: pH)

In Fig. S17, (a–c) three dosage tertiles (low → high). ICE curves are computed as pH varies within 
dosage tertiles. At low dosage, per-gram capacity is larger and pH sensitivity is pronounced 
(steeper decline as pH increases). At higher dosage, curves shift downward on a per-gram basis 
and the mean ICE shows slightly reduced slope, consistent with site crowding/aggregation and the 
per-mass normalization of . The combination of S16 and S17 clarifies that pH governs 𝑄𝑒

electrostatic favorability, while dosage modulates effective capacity per unit mass, jointly 
controlling the observed performance.



Fig. S18.  SHAP summary (global importance and distribution)

Fig. S18, SHAP-style summary (“beeswarm”) visualizes the global contribution distribution 
(SHAP or SHAP-like values) for each feature on predicted . Features are ordered by mean 𝜙 𝑄𝑒

absolute contribution, highlighting overall importance. In agreement with domain expectations, 
time and show strong positive contributions (longer contact and higher driving force), whereas 𝐶0 

pH and ionic strength contribute negatively (less favorable electrostatics as these increase). Dosage 
typically exerts a mild negative per-gram effect. The horizontal spread reflects heterogeneity 
across the dataset (context-dependent effects).



Fig. S19. SHAP main-effect dependence

In Fig. S19, (a) pH, (b) ionic strength , (c) , (d) dosage, (e) time. Caption: Dependence plots 𝜇 𝐶0

relate each feature’s value to its SHAP(-like) contribution to . (a) pH: contributions become 𝜙 𝑄𝑒

more negative as pH increases; (b) : contributions are more negative at higher , indicating 𝜇 𝜇

electrolyte screening; (c) : positive with diminishing marginal gains, tracking saturation; (d) 𝐶0

Dosage: slightly negative per-gram contributions at higher dosage; (e) Time: positive and 
saturating, consistent with approach to equilibrium. These main-effect profiles mirror PD/ALE 
trends while reporting additive attributions on a common scale.



Fig. S20. SHAP pairwise interaction maps

In Fig. S20, (a) pH × ionic strength , (b) pH × time , (c) time × dosage. Interaction 𝜇 𝑡 𝑡 
visualizations show how joint feature states redistribute SHAP(-like) contributions. (a) pH × : 𝜇
most positive contributions occur at low pH and low ; contributions become increasingly negative 𝜇
as either pH or rises, demonstrating synergistic penalty from alkalinity and screening. (b) pH × 𝜇
time: increasing time partly offsets the negative pH effect (higher contributions at long even under 𝑡
moderate pH), indicating kinetic relief as equilibrium is approached. (c) time × dosage: at longer 
times, capacity contributions are positive across dosages, but per-gram gains are attenuated at high 
dosage, aligning with the mild negative main effect of dosage. Altogether, SHAP interactions 
corroborate the 2D ALE patterns and provide an attributional perspective on coupled controls.
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