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Figure S1 SEM images of (a-b) Fe-CP, (c-d) Fe/C-900,
(e-f) Zn-CP and (g-h) Zn/C-900.
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Figuere S2 Particle size distribution of Fe;C on ZnFe(3:1)/C-900 catalyst.



ZnFe(3:1)-CP
ZnFe(5:1)-CP
ZnFe(1:1)-CP
ZnFe(1:3)-CP
ZnFe(2:1)-CP

Y e

Nstirthens

it

Intensity(a.u.)

“Ml TP | WP

0 10 20 30 40 50 60 70 80 90

26(degree)
b ZnFe(3:1)/C-900
ZnFe(5:1)/C-900
ZnFe(1:1)/C-900
ZnFe(1:3)/C-900
ZnFe(2:1)/C-900 L

=

(
%

Intensity(a.u.)
rﬂ
3
4

PDF#35-0772-Fe,C lu

PDF#06-0696-Fe . |

PDF#06-0615-FeO | | | .
T T T T T T T T

0 10 20 30 40 50 60 70 80 90
20(degree)

ZnFe(3:1)/C-700
——— ZnFe(3:1)/C-800
—— ZnFe(3:1)/C-900

Intensity(a.u.)
l_ é
‘F
]F
£
L

PDF#35-0772-Fe,C I 1 |||| l Lid I L
11 1

PDF#29-0741-Fe,ZnC, | I ' |
_ 1 1
T T T T T T T T

0 10 20 30 40 50 60 70 80 90
20(degree)

Figure S3 (a) XRD patterns of ZnFe(3:1)-CP, ZnFe(5:1)-CP, ZnFe(1:1)-CP, ZnFe(1:3)-CP
and ZnFe(2:1)-CP; (b) XRD patterns of ZnFe(3:1)/C-900, ZnFe(5:1)/C-900, ZnFe(1:1)/C-
900, ZnFe(1:3)/C-900 and ZnFe(2:1)/C-900; (c) XRD patterns of ZnFe(3:1)/C-700,
ZnFe(3:1)/C-800 and ZnFe(3:1)/C-900.



Table S1 Atomic percentage content and mass percentage content of
ZnFe(3:1)/C-900 catalyst surface elements.

Elements Atom/% Mass/%
C 91.25 86.28
N 2.86 3.15
O 4.93 6.22
Fe 0.8 3.53
Zn 0.16 0.82
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Figure S4 Deconvolution curves of (¢) Cls and (b) Ols XPS fine

spectra for ZnFe(3:1)/C-900 catalyst.
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Table S2 Performance comparison of commercial RuO, and IrO, catalysts

versus several carbon supported iron-based catalysts for alkaline OER.

Sample Overpotential (mV)  Tafel slope (mV/dec) Stability (h)  Electrolyte Ref.
Commercial RuO, 310 mV@10mA/cm? 49.2 <1 1.0 M KOH [1]
Commercial IrO, 320 mV@10mA/cm? 70 <3 0.1 M KOH 2]
B-C;Ny@FesC 243 mV@10mA/cm? 38.2 32 1.0 M KOH [3]
FeSAs-PFN-CNTs 310 mV@10mA/cm? 63.8 24 1.0 M KOH [4]
Fe/Ni_3.0h 310 mV@10mA/cm? 37 10 1.0 M KOH [5]
Fe;C@CNFE/NC-950 311 mV@10mA/cm? 63 16 1.0 M KOH [6]
Co/FeC@NHC-1 380 mV@10mA/cm? 70 11 1.0 M KOH [7]
Fe;C/CoFe,0,@CNFs-1.5 340 mV@10mA/cm? 128.4 8 0.1 M KOH [8]
Fe;C@CNTs 375 mV@20mA/cm? 120 4 1.0 M KOH [9]
Fe;C@NG800-0.2 361 mV@10mA/cm? 62 20 0.1 M KOH [10]
NiFe;@NGHS-NCNTs 383 mV(@10mA/cm? 136.13 15 0.1 M KOH [11]
Fe;S4/NF 257 mV@10mA/cm? 45.9 12 1.0 M KOH [12]
FNC@PANIi NCs 219 mV@10mA/cm? 108.7 10 1.0 M KOH [13]
ZnFe(3:1)/C-900 408 mV@10mA/cm? 76.1 15 1.0M KOH  This work
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Table S3 Elemental reaction pathway of the Krasil’shchikov mechanism
model for Metal Catalysts in the OER (M: Metal; *: Transition state).

Equation Tafel slope (mV/dec) Number
M*+ OH™ < M*O-H + ¢ 120 1
M*O-H +OH~ < M*O~ + H,0 60 2
M*O~ — M*O +e 45 3
2 M*O — M* + O, 15 4
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Figure S5 CV curves at different scan rates (Range: 20 mV/s-100 mV/s, Step length:
20 mV/s) for (a) ZnFe(3:1)/C-900, (b) Zn/C-900 and (c) Fe/C-900 samples.
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Figure S6 ECSA comparison of ZnFe(3:1)/C-900, Zn/C-900, and Fe/C-900 catalysts.
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Figure S7 LSV comparison and overpotential values of ZnFe(3:1)/C-900
catalyst at 10 mA/cm? and 50 mA/cm? before and after stability testing.
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Figure S8 Durability test of ZnFe(3:1)/C-900 at 50 mA cm2.

Table S4 XPS elemental comparison of catalysts before and after reaction.

Sample Elemental content (at.%)
C N O Fe Zn
ZnFe(3:1)/C-900-before OER 91.25 2.86 4.93 0.8 0.16
ZnFe(3:1)/C-900-after OER 86.94 0.82 10.09 1.98 0.18

ZnFe(3:1)/C-900- after 15h stability 62.09 2.15 32.66 2.73 0.37
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Figure S9 (a-b) TEM images and (c) HR-TEM image of ZnFe(3:1)/C-900-after
stability. (d) HAADF-STEM image and (e-1) TEM elemental mappings of the
ZnFe(3:1)/C-900-after 15 h stability.
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Figure S10 Comparison of XPS survey spectra (a) and high-resolution core-level
spectra (C 1s (b), N 1s (¢), O 1s (d), Fe 2p (e), Zn 2p (f)) of the ZnFe(3:1)/C-900
catalyst in pre-OER, post-OER, and post-stability testing states.



