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Figure S1 SEM images of (a-b) Fe-CP, (c-d) Fe/C-900,
 (e-f) Zn-CP and (g-h) Zn/C-900.

Figuere S2 Particle size distribution of Fe3C on ZnFe(3:1)/C-900 catalyst.
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Figure S3 (a) XRD patterns of ZnFe(3:1)-CP, ZnFe(5:1)-CP, ZnFe(1:1)-CP, ZnFe(1:3)-CP 
and ZnFe(2:1)-CP; (b) XRD patterns of ZnFe(3:1)/C-900, ZnFe(5:1)/C-900, ZnFe(1:1)/C-

900, ZnFe(1:3)/C-900 and ZnFe(2:1)/C-900; (c) XRD patterns of ZnFe(3:1)/C-700, 
ZnFe(3:1)/C-800 and ZnFe(3:1)/C-900.



Table S1 Atomic percentage content and mass percentage content of 
ZnFe(3:1)/C-900 catalyst surface elements.

Elements Atom/% Mass/%
C 91.25 86.28
N 2.86 3.15
O 4.93 6.22
Fe 0.8 3.53
Zn 0.16 0.82

300 298 296 294 292 290 288 286 284 282 280
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Figure S4 Deconvolution curves of (e) C1s and (b) O1s XPS fine 
spectra for ZnFe(3:1)/C-900 catalyst.



Table S2 Performance comparison of commercial RuO2 and IrO2 catalysts 
versus several carbon supported iron-based catalysts for alkaline OER.

Sample Overpotential (mV) Tafel slope (mV/dec) Stability (h) Electrolyte Ref.
Commercial RuO2 310 mV@10mA/cm2 49.2 <1 1.0 M KOH [1]
Commercial IrO2 320 mV@10mA/cm2 70 <3 0.1 M KOH [2]
B-C3N4@Fe3C 243 mV@10mA/cm2 38.2 32 1.0 M KOH [3]

FeSAs-PFN-CNTs 310 mV@10mA/cm2 63.8 24 1.0 M KOH [4]
Fe/Ni_3.0h 310 mV@10mA/cm2 37 10 1.0 M KOH [5]

Fe3C@CNF/NC-950 311 mV@10mA/cm2 63 16 1.0 M KOH [6]
Co/FeC@NHC-1 380 mV@10mA/cm2 70 11 1.0 M KOH [7]

Fe3C/CoFe2O4@CNFs-1.5 340 mV@10mA/cm2 128.4 8 0.1 M KOH [8]
Fe3C@CNTs 375 mV@20mA/cm2 120 4 1.0 M KOH [9]

Fe3C@NG800-0.2 361 mV@10mA/cm2 62 20 0.1 M KOH [10]
NiFe3@NGHS-NCNTs 383 mV@10mA/cm2 136.13 15 0.1 M KOH [11]

Fe3S4/NF 257 mV@10mA/cm2 45.9 12 1.0 M KOH [12]
FNC@PANi NCs 219 mV@10mA/cm2 108.7 10 1.0 M KOH [13]
ZnFe(3:1)/C-900 408 mV@10mA/cm2 76.1 15 1.0 M KOH This work
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Table S3 Elemental reaction pathway of the Krasil’shchikov mechanism 
model for Metal Catalysts in the OER (M: Metal; *: Transition state).

Equation Tafel slope (mV/dec) Number

M* + OH－  M*O-H + e-↔ 120 1

M*O-H + OH－  M*O－ + H2O↔ 60 2

M*O－ → M*O + e- 45 3

2 M*O → M* + O2 15 4
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Figure S5 CV curves at different scan rates (Range: 20 mV/s-100 mV/s, Step length: 
20 mV/s) for (a) ZnFe(3:1)/C-900, (b) Zn/C-900 and (c) Fe/C-900 samples.
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Figure S6 ECSA comparison of ZnFe(3:1)/C-900, Zn/C-900, and Fe/C-900 catalysts.

(a) (b)

Figure S7 LSV comparison and overpotential values of ZnFe(3:1)/C-900 
catalyst at 10 mA/cm2 and 50 mA/cm2 before and after stability testing.



Figure S8 Durability test of ZnFe(3:1)/C-900 at 50 mA cm-2.

Table S4 XPS elemental comparison of catalysts before and after reaction.

Sample Elemental content (at.%)

C N O Fe Zn

ZnFe(3:1)/C-900-before OER 91.25 2.86 4.93 0.8 0.16

ZnFe(3:1)/C-900-after OER 86.94 0.82 10.09 1.98 0.18

ZnFe(3:1)/C-900- after 15h stability 62.09 2.15 32.66 2.73 0.37
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Figure S9 (a-b) TEM images and (c) HR-TEM image of ZnFe(3:1)/C-900-after 
stability. (d) HAADF-STEM image and (e-i) TEM elemental mappings of the 

ZnFe(3:1)/C-900-after 15 h stability.
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Figure S10 Comparison of XPS survey spectra (a) and high-resolution core-level 
spectra (C 1s (b), N 1s (c), O 1s (d), Fe 2p (e), Zn 2p (f)) of the ZnFe(3:1)/C-900 

catalyst in pre-OER, post-OER, and post-stability testing states.


