Electrochemical behavior and biocompatibility of TiO₂@C core-shell NWs deposited by PECVD for cellular interface application.

Roaa Sait¹, Raghad Alzahrani¹, Nabeel Aslam², Shofarul Wustoni³, Camelia Florica², Andrea Diaz-Gaxiola⁴, Georgian Melinte², Yaping Zhang², Youyou Yuan², Mohammed Nejib Hedhili², Sridhar Govindarajan⁵, Ahad Syed², Imed Eddine-Gallouzi⁴, Sahika Inal³, Hala Aljawhari¹

Corresponding author email: sait.roaa@gmail.com. Tel: +966 12 263-289.

¹ Faculty of Science, Department of Physics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

² Core Laboratories, King Abdullah University of Science and Engineering, Thuwal 23955-6900, Saudi Arabia.

³ Organic Bioelectronics Laboratory, Biological Science and Engineering Division, King Abdullah University of Science and Engineering (KAUST), Thuwal 23955-6900, Saudi Arabia.

⁴ Bioscience laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Engineering (KAUST), Thuwal 23955-6900, Saudi Arabia.

⁵ Emerging Technologies Research Center, De Montfort University, The Gateway, Leicester, LE18BH, United Kingdom.

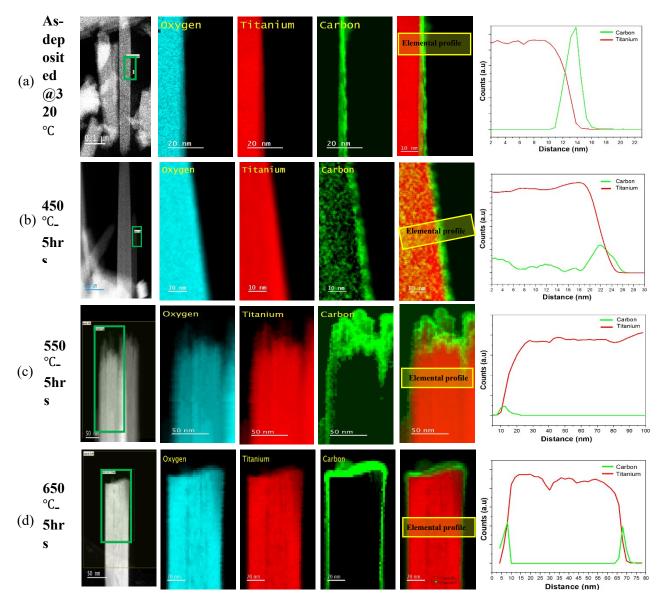


Figure S1: STEM image and EELS elemental maps of TiO₂@C core-shell NWS for (a) as-deposited carbon, (b) insitu annealed at 450 for 5 hours, (c) 550 for 5 hours, and (d) 650 for 5 hours, with their Elemental profile of C and Ti showing the shell thickness.

°C

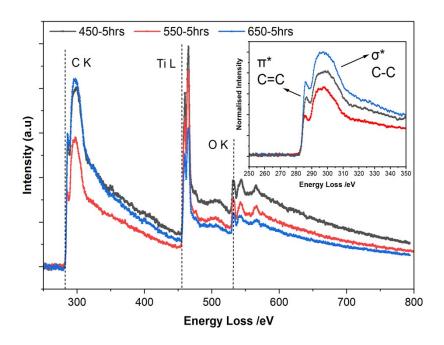


Figure S2: Top region overall EELS spectra of $TiO_2@C$ core-shell NWS annealed at 450 °C, 550 °C, and 650 °C with an inset figure showing the high-resolution C K-edge.

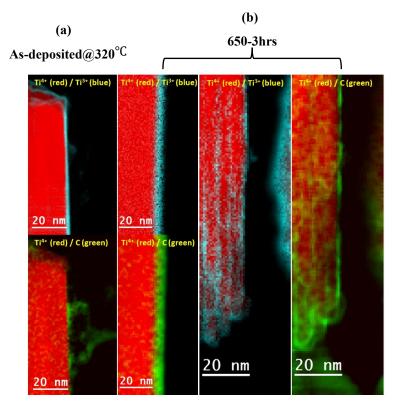


Figure S3: EELS elemental maps of $TiO_2@C$ core-shell NWS for (a) as-deposited carbon, (b) in-situ annealed at $650^{\circ}C$ for 3 hours.

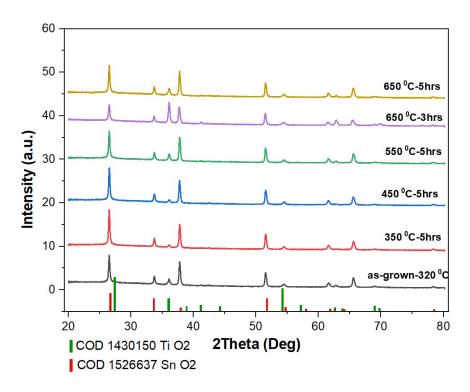


Figure S4: XRD of TiO₂@C core-shell NWS annealed at different temperatures and times.

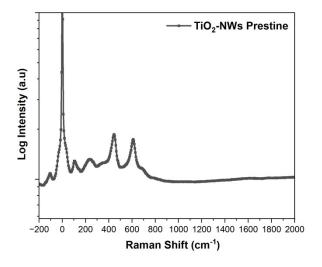


Figure S5: Raman Spectroscopy spectrum of pristine TiO2-NWs.

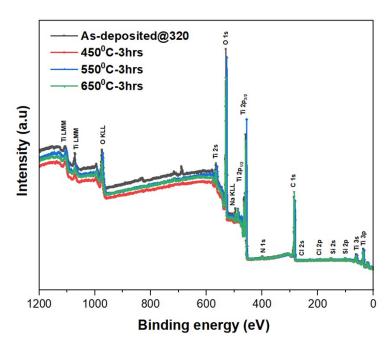


Figure S6: XPS survey spectra of TiO₂@C core-shell NWS in-situ annealed at 450 $^{\circ}$ C, 550 $^{\circ}$ C, and 650 $^{\circ}$ C for 3 hours, showing dominants binding energy peaks corresponding to Ti, C and O signals.

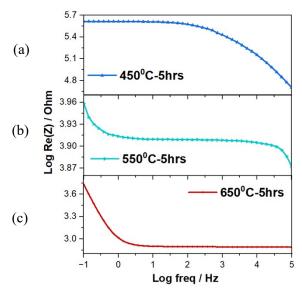


Figure S7: Bode plots of TiO₂@C-NWs samples in-situ annealed at (a) 450° C for 5 hours, (b) 550° C for 5 hours, and (c) 650° C for 5 hours.

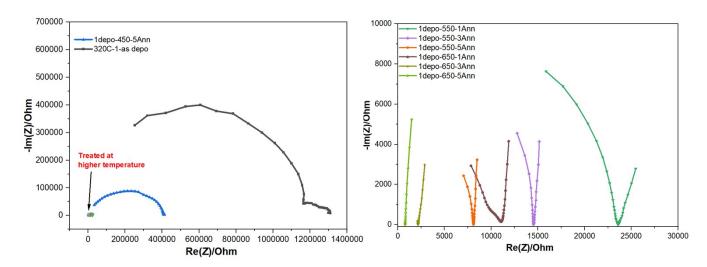


Figure S8: Nyquist impedance spectra of (a) as-deposited $TiO_2@C$ -NWs sample and in-situ annealed at $450^{\circ}C$ for 5 hours, and (b) samples annealed at $550^{\circ}C$ and $650^{\circ}C$ for 1, 3, 5 hours.