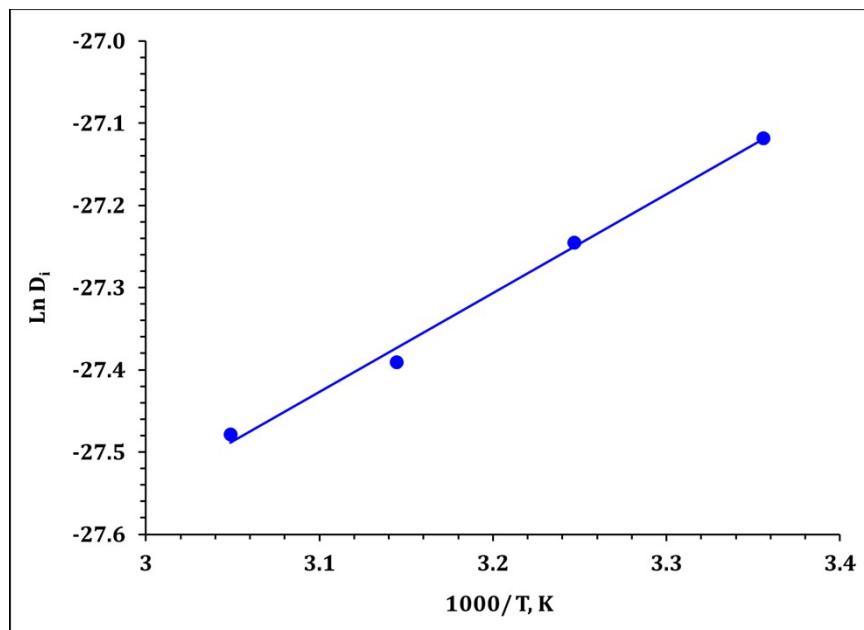


Zr-Gallic acid based metal organic compound as adsorbent for extraction of Uranium (VI) from Nitrate solution: Adsorption behaviors and mechanisms

Ahmed M. Masoud


Nuclear Materials Authority, P.O. Box 530, El Maddi, Cairo, Egypt

Corresponding author: chemmaso010@hotmail.com

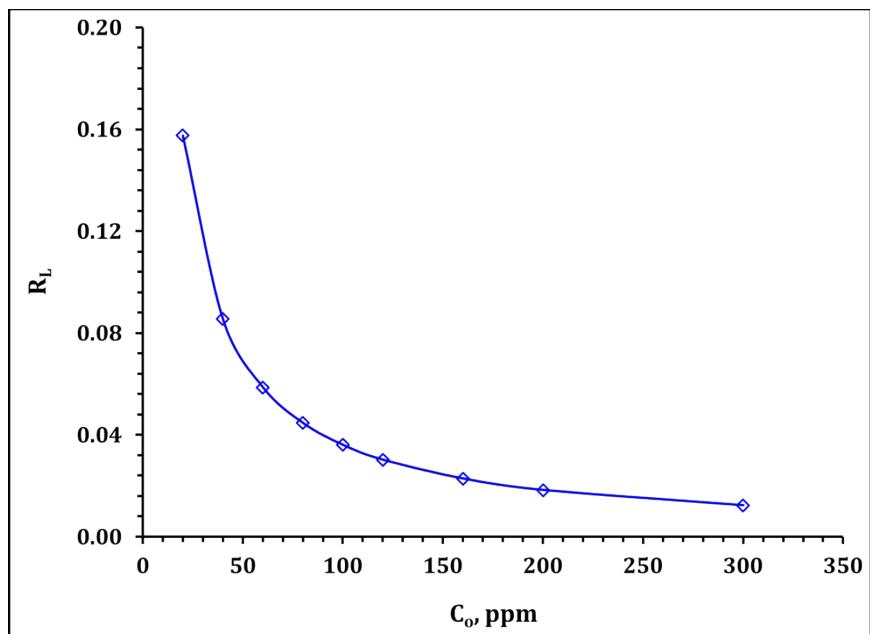
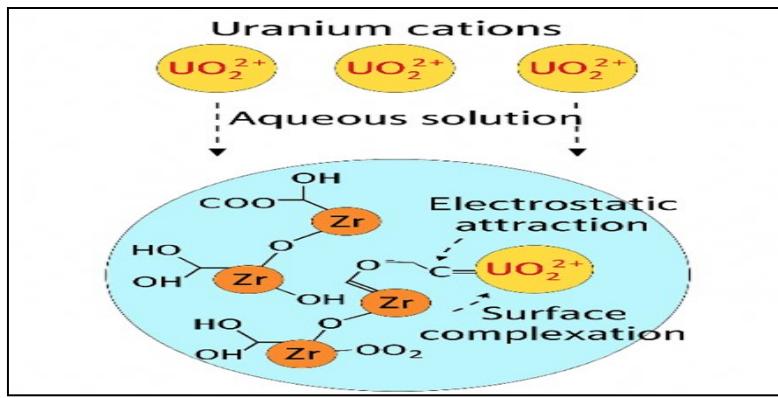


Figure S1: *U(VI) speciation as a function of solution pH, calculated using Hydra-MEDUSA equilibrium calculation program [1].*


1) Hussein AEM, Taha MH (2013) Uranium removal from nitric acid raffinate solution by solvent immobilized PVC cement. *J Radioanal Nucl Chem* 295:709–715. [https://doi.org/10.1007/S10967-012-2158-3/TABLES/2](https://doi.org/10.1007/S10967-012-2158-3)

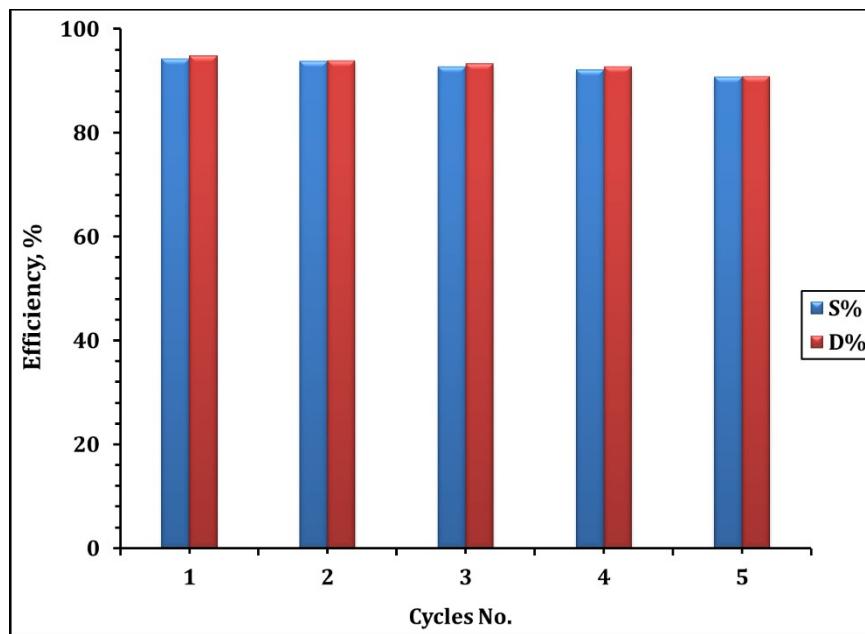

Figure S2: Arrhenius plot for U(VI) sorption onto prepared composite

Figure S3: Separation factor R_L of U(VI) adsorption process.

Figure S4. Schematic representation of the proposed adsorption mechanism of U(VI) onto Zr-GA

Figure S5: Sorption/ desorption cycles for uranium capture process.

Table S1: Kinetic, isotherm, and thermodynamics equations for U(VI) adsorption process [1-8].

Kinetics	Equations
Pseudo-first-order	$q_t = q_1 (1 - e^{-k_1 t})$
Pseudo-second-order	$q_t = \frac{1}{(1 k_2 q_2^2) + (t q_2)}$
Intra-particle diffusion model (IPD)	$q_t = K_{id} t^{0.5} + C_i$
Boyd model	$Bt = -0.4977 - \ln(1 - F)$
Isotherms	Equations
Langmuir model	$q_e = \frac{q_m k_L C_e}{1 + k_L C_e}$
Freundlich model	$q_e = K_F C_e^{1/n_F}$
Sips model	$q_e = \frac{q_S (k_S C_e)^{mS}}{1 + (k_S C_e)^{mS}}$
Thermodynamics	Equations
	$\log K_C = -\frac{\Delta H^o}{2.303 R} X \frac{1}{T} + C$ $-\Delta G^o = 2.303 RT \log K_C$ $\Delta G^o = \Delta H^o - T \Delta S^o$
Fitting	Equations
Coordination coefficient (R^2)	$R^2 = 1 - \frac{\sum_1^n (q_{exp} - q_{pred})^2}{\sum_1^n (q_{exp} - \bar{q}_{exp})^2}$

q_e (mg g⁻¹) is the equilibrium concentration of U(VI) species, and q_t (mg g⁻¹) is the adsorbed amount of U(VI) species ions after time t (min), C_e (mg L⁻¹) is equilibrium concentration of U(VI) species. k_1 (min⁻¹) and k_2 (min⁻¹) are the rate constants for the pseudo first and second order, respectively. K_{id} (mg/g, min^{0.5}) is a rate constant, and C is the thickness of the boundary layer. F is

the ratio of the sorbed quantity at time t and that sorbed at equilibrium; B is the time constant and it equals $\pi^2 D_i / r_o^2$ [4]; D_i is the effective diffusion coefficient of metal ions; r_o is the radius of the solid particles; and n is an integer. q_m and q_s are the maximum sorption capacity (mg. g^{-1}) of Langmuir and Sips models. k_L (L. mg^{-1}), K_F (L/ mg), and K_S (L/ mg) are represent the constants of Langmuir, Freundlich, and Sips models. n refer to the sorption intensity, q_s is the theoretical isotherm saturation capacity (mg/g). K_C is a non-dimensional equilibrium constant and it equals $K_d \times 1000 \times \rho$ [5]; T is the temperature (K), R is the universal gas constant ($8.314 \text{ J mol}^{-1} \text{ K}^{-1}$), ρ is solution density g/ L , and C is a constant. R^2 is the coordination coefficient, the number of test points is n , the experimental equilibrium capacity is q_{exp} (mg g^{-1}), while the predicted capacity is q_{pred} (mg g^{-1}).

Table S2: Surface charges and mean particle sizes of Zr-GA before and after adsorption process

<i>Analysis</i>	<i>Before</i>	<i>After</i>
<i>DLS analysis, nm</i>	549.5	1116.1
<i>Zeta potential, mV</i>	-46.69	-26.49

Table S3: The values of Morris-Weber model parameters.

		25 °C	35 °C	45 °C	55 °C
Weber and Morris model	k_i ($\text{mg/g min}^{1/2}$)	1.06	0.88	0.67	0.44
	C	20.5	13.5	10.4	5.3
	R^2	0.98	0.97	0.98	0.96

References:

- 1) Hu, Q., Pang, S. and Wang, D., 2022. In-depth insights into mathematical characteristics, selection criteria and common mistakes of adsorption kinetic models: A critical review. *Separation & Purification Reviews*, 51(3), pp.281-299.
- 2) González-López, M.E., Laureano-Anzaldo, C.M., Pérez-Fonseca, A.A., Arellano, M. and Robledo-Ortíz, J.R., 2022. A critical overview of adsorption models linearization: methodological and statistical inconsistencies. *Separation & Purification Reviews*, 51(3), pp.358-372.
- 3) Tho, P.T., Van, H.T., Nguyen, L.H., Hoang, T.K., Tran, T.N.H., Nguyen, T.T., Nguyen, T.B.H., Le Sy, H., Tran, Q.B., Sadeghzadeh, S.M. and Asadpour, R., 2021. Enhanced simultaneous adsorption of As (iii), Cd (ii), Pb (ii) and Cr (vi) ions from aqueous solution using cassava root husk-derived biochar loaded with ZnO nanoparticles. *RSC advances*, 11(31), pp.18881-18897.
- 4) Hassan, H.S., El-Kamash, A.M. and Ibrahim, H.A.S., 2019. Evaluation of hydroxyapatite/poly (acrylamide-acrylic acid) for sorptive removal of strontium ions from aqueous solution. *Environmental Science and Pollution Research*, 26, pp.25641-25655.
- 5) Chen, X., Hossain, M.F., Duan, C., Lu, J., Tsang, Y.F., Islam, M.S. and Zhou, Y., 2022. Isotherm models for adsorption of heavy metals from water-a review. *Chemosphere*, 307, p.135545.
- 6) Majd, M.M., Kordzadeh-Kermani, V., Ghalandari, V., Askari, A. and Sillanpää, M., 2022. Adsorption isotherm models: A comprehensive and systematic review (2010–2020). *Science of The Total Environment*, 812, p.151334.
- 7) Taha, M.H., 2021. Sorption of U (VI), Mn (II), Cu (II), Zn (II), and Cd (II) from multi-component phosphoric acid solutions using MARATHON C resin. *Environmental Science and Pollution Research*, 28(10), pp.12475-12489.
- 8) Ebelegi, A.N., Ayawei, N. and Wankasi, D., 2020. Interpretation of adsorption thermodynamics and kinetics. *Open Journal of Physical Chemistry*, 10(3), pp.166-182.