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DFT calculations: 

 

We performed density functional theory (DFT) simulations using the Spanish Initiative for Electronic 

Simulations with Thousands of Atoms (SIESTA) package [1]. For the exchange-correlation term, we 

implemented the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation 

(GGA). A double-ζ plus polarization (DZP) atomic orbital basis set was employed with a plane-wave 

energy cutoff of 500 Ry. All atomic positions were fully relaxed until the residual force on each atom was 

less than 0.02 eV/Å. To prevent artificial interlayer interactions, a vacuum spacing of 20 Å was applied 

along the out-of-plane direction. The Brillouin zone was sampled using a 15×15×1 Monkhorst–Pack k-

point grid to ensure convergence. The resulting optimized lattice constant for h-BP is 3.18 Å, which is in 

excellent agreement with previous DFT reports [2]. 

 

 

 

Figure S1. (a) Zigzag BP nanoribbon. (b)–(c) Rolling process of the nanoribbon leading to the formation 

of a zigzag BP nanotube. (d) The resulting unit cell of the zigzag BPNT, highlighting the arrangement of B 

and P atoms along the tube axis and demonstrating the structural periodicity in the rolled-up configuration. 
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Finding the required tight binding parameters for h-BP: 

Constructing the tight-binding (TB) Hamiltonian requires determining key parameters, namely the nearest-

neighbor hopping integrals and the on-site atomic energies for each atom in the unit cell. For h-BP, we 

extracted these TB parameters by fitting the TB band structure to results from DFT. To achieve a high 

degree of accuracy and quantitative agreement, our model was extended to include interactions up to the 

fifth nearest-neighbor. This approach yields excellent agreement between the TB and DFT band structures 

for h-BP, as shown in Figure A1, with strong correlation for both the valence and conduction bands across 

the entire first Brillouin zone. 

 

 

Figure S2. Band structure of monolayer h-BP calculated using the 5NN- tight binding model (red lines) 

and DFT (blue lines). The tight-binding results exhibit excellent agreement with DFT, especially in the 

vicinity of the K-point. Both approaches reveal parabolic dispersion of the valence and conduction bands 

near the K-point and confirm the presence of a direct semiconductor band gap at this high-symmetry point. 
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Zone-Folding Formalism for BASNTs in the presence of the magnetic field 

The electronic structure of BPNTs is derived from that of the monolayer h-BP using the well-established 

zone-folding approximation [3]. This method imposes periodic boundary conditions on the 2D wave vector, 

effectively quantizing its component along the nanotube's circumference [𝐾⃗⃗ 2] while preserving its 

continuous nature along the tube axis [𝐾⃗⃗ 1]. So, the nanotube's wave vector can then be expressed in terms 

of reciprocal vectors as [3, 4]: 

𝑘 = 𝜇𝐾⃗⃗ 1 + 𝑘𝑧

𝐾⃗⃗ 2

|𝐾⃗⃗ 2|
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Here, 𝜇 is the discrete subband index, 𝑁 denotes the number of hexagonal units within the nanotube's 

translational unit cell, 𝑘𝑧 is the continuous axial wave vector and 𝑇 is the translational period. By 

substituting this quantized wave vector into the monolayer's dispersion relation, we obtain the 1D subband 

energy structure for the BPNTs as: 

𝐸𝐵𝑃𝑁𝑇
(𝑙) (𝑘𝑧, 𝜇) = 𝐸ℎ−𝐵𝑃
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Figure A3. The (a) imaginary and (b) part of the linear optical susceptibility for zigzag BPNTs with S1 

family.  
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Figure A4. The (a) imaginary and (b) part of the linear optical susceptibility for zigzag BPNTs with S2 

family.  
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Figure A5. The (a) imaginary and (b) part of the linear optical susceptibility for zigzag BPNTs with S3 

family.  
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Figure A6. The (a) imaginary and (b) part of the linear optical susceptibility for Z20- BPNT, in the presence 

of the magnetic field.  
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