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DFT calculations:

We performed density functional theory (DFT) simulations using the Spanish Initiative for Electronic
Simulations with Thousands of Atoms (SIESTA) package [1]. For the exchange-correlation term, we
implemented the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation
(GGA). A double-{ plus polarization (DZP) atomic orbital basis set was employed with a plane-wave
energy cutoff of 500 Ry. All atomic positions were fully relaxed until the residual force on each atom was
less than 0.02 eV/A. To prevent artificial interlayer interactions, a vacuum spacing of 20 A was applied
along the out-of-plane direction. The Brillouin zone was sampled using a 15x15x1 Monkhorst—Pack k-
point grid to ensure convergence. The resulting optimized lattice constant for h-BP is 3.18 A, which is in

excellent agreement with previous DFT reports [2].
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Figure S1. (a) Zigzag BP nanoribbon. (b)—(c) Rolling process of the nanoribbon leading to the formation
of a zigzag BP nanotube. (d) The resulting unit cell of the zigzag BPNT, highlighting the arrangement of B

and P atoms along the tube axis and demonstrating the structural periodicity in the rolled-up configuration.
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Finding the required tight binding parameters for h-BP:

Constructing the tight-binding (TB) Hamiltonian requires determining key parameters, namely the nearest-
neighbor hopping integrals and the on-site atomic energies for each atom in the unit cell. For h-BP, we
extracted these TB parameters by fitting the TB band structure to results from DFT. To achieve a high
degree of accuracy and quantitative agreement, our model was extended to include interactions up to the
fifth nearest-neighbor. This approach yields excellent agreement between the TB and DFT band structures
for h-BP, as shown in Figure A1, with strong correlation for both the valence and conduction bands across

the entire first Brillouin zone.
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Figure S2. Band structure of monolayer h-BP calculated using the 5NN- tight binding model (red lines)
and DFT (blue lines). The tight-binding results exhibit excellent agreement with DFT, especially in the
vicinity of the K-point. Both approaches reveal parabolic dispersion of the valence and conduction bands

near the K-point and confirm the presence of a direct semiconductor band gap at this high-symmetry point.



Zone-Folding Formalism for BASNTS in the presence of the magnetic field

The electronic structure of BPNTSs is derived from that of the monolayer h-BP using the well-established

zone-folding approximation [3]. This method imposes periodic boundary conditions on the 2D wave vector,
effectively quantizing its component along the nanotube's circumference [1?2] while preserving its

continuous nature along the tube axis [ﬁl]. So, the nanotube's wave vector can then be expressed in terms

of reciprocal vectors as [3, 4]:
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Here, u is the discrete subband index, N denotes the number of hexagonal units within the nanotube's
translational unit cell, k, is the continuous axial wave vector and T is the translational period. By
substituting this quantized wave vector into the monolayer's dispersion relation, we obtain the 1D subband

energy structure for the BPNTS as:
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Figure A3. The (a) imaginary and (b) part of the linear optical susceptibility for zigzag BPNTs with S1
family.
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Figure A4. The (a) imaginary and (b) part of the linear optical susceptibility for zigzag BPNTs with S2
family.



40 ; : |
(a) —N=21
—24
——27

Im[x(l)(g)] (a.u.)

10+
O J| | 1
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
E(eV)
40 | |
(b)
=0 |
\‘E‘; 20
3
=
g O :
_20 1 | | | 1 | | |
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
E(eV)

Figure A5. The (a) imaginary and (b) part of the linear optical susceptibility for zigzag BPNTs with S3
family.
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Figure A6. The (a) imaginary and (b) part of the linear optical susceptibility for Z20- BPNT, in the presence

of the magnetic field.
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