Supporting Information

Improved photocatalytic activity and enhanced germination rate of *Oryza Sativa* and urea sensor development utilizing fabricated NiO·SrCO₃·ZnO nanomaterials

Shubrojit Dey ^a, Pallab Chandra Saha ^{a,b}, Md Abdus Subhan ^{a*}, M. M. Alam ^c, Mohammad Al-Mamun ^d, Didar Hossain ^e, Abul Kalam Azad ^e, Amjad E. Alsafrani ^f, Abdulkarim Albishri ^g, and Mohammed M. Rahman ^{h*}

^a Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet–3114, Bangladesh

^b Department of Chemistry, University of Virginia, Charlottesville, VA, 22904 USA

^c Department of Chemical Engineering, Z. H. Sikder University of Science and Technology (ZHSUST), Shariatpur–8024, Bangladesh (<u>alam-mahmud@hotmail.com</u>)

^d Centre for Clean Environment and Energy, Griffith School of Environment, Gold Coast Campus, Griffith University, QLD 4222, Australia

^e Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology, Sylhet–3114, Bangladesh

f Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia (aalsafrani@uj.edu.sa)

g Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia (<u>akalbishri@kau.edu.sa</u>)

h Center of Excellence for Advanced Materials Research (CEAMR) & Chemistry department, Faculty of Science, King Abdulaziz University, Saudi Arabia (mmrahman@kau.edu.sa)

(*Corresponding author's e-mail: subhan-che@sust.edu and mmrahman@kau.sa.edu)

List of Supplemental Figures

Figure S1. SEM image of ternary NiO·SrCO₃·ZnO NMs at different magnificent

Figure S2. SEM–EDS mapping of NiO·SrCO₃·ZnO NMs (a) Nickel, (b) Strontium, (c) Zinc, (d) Oxygen, and (e) Overlap of all of them

Figure S3. UV–Visible spectra of NiO·SrCO₃·ZnO NMs at different calcined temperatures

Figure S4. PL spectra of NiO·SrCO₃·ZnO NMs at (a) 400 °C and (b) 900 °C calcined temperature

Figure S5. UV–Visible spectra of MB dye (5 ppm) removal using NiO·SrCO₃·ZnO NMs under visible light irradiation for 240 minutes, (a–e) dose effect, and (f–h) different calcined temperature effect.

Figure S6. Oryza sativa (a) germination percentage and (b) average length of radicle using different concentrations of NiO·SrCO₃·ZnO NMs

List of Supplemental Tables

Table S1. I and RIR value of components (information were listed from MDI Jade 6.5 software)

Table S2. PL spectra of NiO·SrCO₃·ZnO NMs compared with single oxide calcined at 600 °C temperature.

Table S3. PL spectra of NiO·SrCO₃·ZnO NMs at different calcined temperature

Table S4. Values of rate constant (k) and r² for dye removal kinetic

Table S5. Antibacterial activities of NiO·SrCO₃·ZnO NMs against pathogenic bacteria

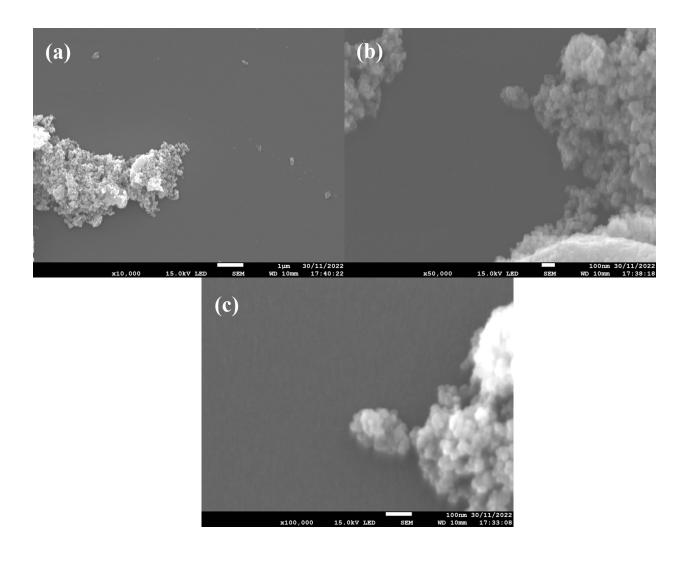
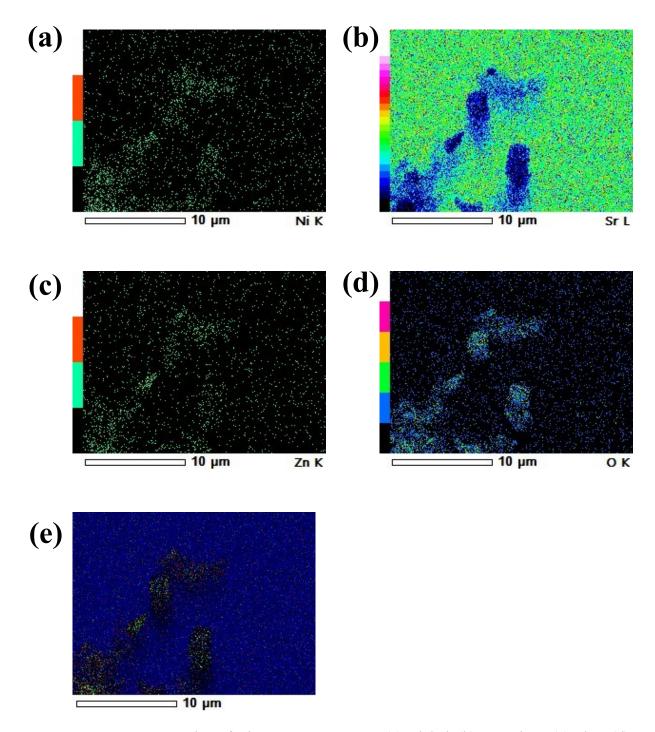



Figure S1. SEM image of ternary NiO·SrCO₃·ZnO NMs at different magnificent

Figure S2. SEM–EDS mapping of NiO·SrCO₃·ZnO NMs (a) Nickel, (b) Strontium, (c) Zinc, (d) Oxygen, and (e) Overlap of all of them

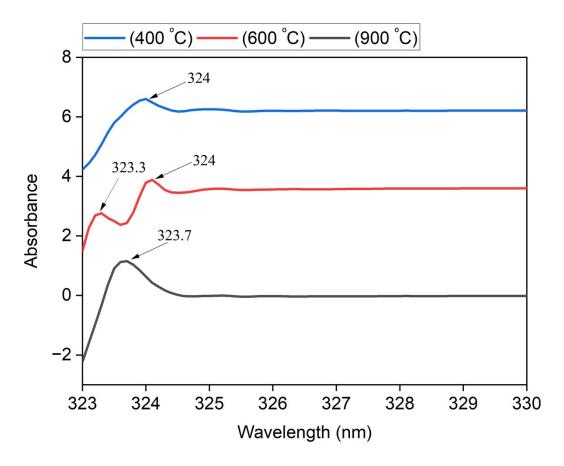


Figure S3. UV-Visible spectra of NiO·SrCO₃·ZnO NMs at different calcined temperatures

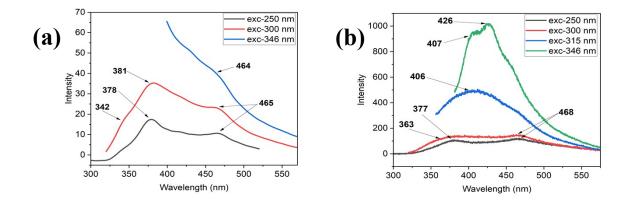
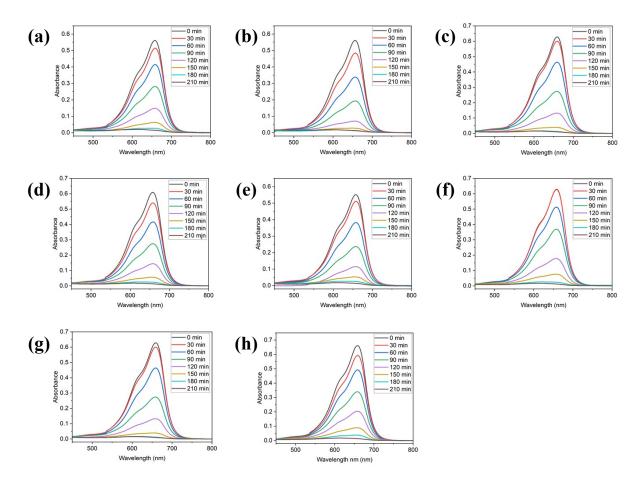
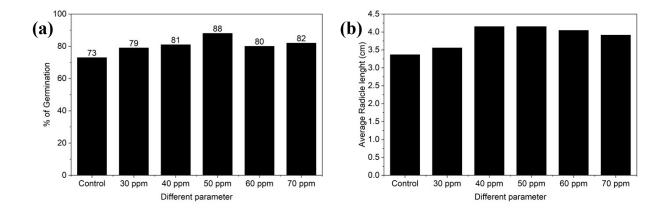




Figure S4. PL spectra of NiO·SrCO₃·ZnO NMs at (a) 400 °C and (b) 900 °C calcined temperature

Figure S5. UV–Visible spectra of MB dye (5 ppm) removal using NiO·SrCO₃·ZnO NMs under visible light irradiation for 240 minutes, (a–e) dose effect, and (f–h) different calcined temperature effect

Figure S6. Oryza sativa (a) germination percentage and (b) average length of radicle using different concentrations of NiO·SrCO₃·ZnO NMs

Table S1. I and RIR value of components (information were listed from MDI Jade 6.5 software)

Component	I value	RIR value		
NiO	12048	4.74		
SrCO ₃	35379	3.8		
ZnO	22473	5.53		

Table S2. PL spectra of NiO·SrCO₃·ZnO NMs compared with single oxide calcined at 600 °C temperature.

	Excitation Wavelength (nm) Emission Wavelength			
NiO·SrCO ₃ ·ZnO	250	382, 466		
	300	344, 382, 466		
	350	463		
NiO	250	373, 459		
	307	324, 362, 466		
SrCO ₃	300	407		
	350	403, 426, 452		
ZnO	250	381, 468		
	300	343, 381, 468		
	350	466		

Table S3. PL spectra of NiO·SrCO₃·ZnO NMs at different calcined temperature

Calcined temperature (°C)	Excitation wavelength (nm)	Emission wavelength (nm)		
400	250	378, 465		
	300	342, 381, 465		
	346	464		
600	250	382, 466		
	300	344, 382, 466		
	350	463		
900	250	377, 468		
	300	363, 468		
	315	406		
	346	407, 426		

Observation	k (min ⁻¹)	r ²
pH 4	0.0005	0.666
pH 7	0.0134	0.9301
pH 9.2	0.0225	0.9316

Table S4. Values of rate constant (k) and r² for dye removal kinetics

Table S5. Antibacterial activities of NiO·SrCO₃·ZnO NMs against pathogenic bacteria

Bacteria culture		Diameter of inhibition zone, D _{iz} , (mm)		Diameter of well, D _w , (mm)	Ratio, R= D _{iz} / D _w		
	1	2	3	D _w , (IIIII)	1	2	3
Staphylococcus aureus	15	18	18	6	2.5	3.0	3.0
Klebsiella pneumoniae	15	18	17		2.5	3.0	2.83
Pseudomonas aeruginosa	17	18	20		2.83	3.0	3.33
Proteus mirabilis	17	17	17		2.83	2.83	2.83