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Abstract

Fagonia arabica "Dhamasa" is traditionally used in Ayurvedic and Unani medicine across South 

Asia and the Middle East for its therapeutic properties, notably as a natural blood purifier. It is 

believed to aid in dissolving blood clots and reducing the risk of brain hemorrhage and 

cardiovascular events. Given previous reports of saponin content in F. arabica, this study aimed 

to evaluate its thrombolytic and anticoagulant potential. After confirming its saponin richness 

through NMR (1D, 2D) and LC-MS, we developed liposomal nanoparticles to enhance 

bioavailability and target clot dissolution more effectively. Liposomes were characterized using 

TEM, particle size, PDI, and zeta potential. In vitro thrombolytic and anticoagulant activities 

were assessed, followed by in vivo testing in adult Wistar rats. The dose-dependent effects of the 

saponin-rich n-butanol fraction of F. arabica on Antithrombin-III levels were evaluated using an 

in vitro quantitative immunoturbidimetric assay. Coagulation parameters were evaluated using 

aPTT and PT assays. A molecular docking study was systematically performed on nine targets 

using the five structurally elucidated steroidal and terpenoid glycosides to predict and evaluate 

their binding affinities. These computational findings were designed to complement ongoing in 

vitro and in vivo investigations. The butanol extract showed significant in vitro thrombolytic and 

anticoagulant effects at 40 mg/mL. The results demonstrate that the saponin-rich fraction 

modulates Antithrombin-III in a concentration-dependent manner. Liposomal nanoparticles 

achieved similar efficacy in vivo at just 3 mg/kg, compared to 100 mg/kg for the non-nano 

extract. The liposomal group showed PT of 35 ± 4 s and aPTT >180 s, outperforming the non-

nano extract (PT 30 ± 7 s, aPTT >180 s) and controls (PT 12 ± 2 s, aPTT 37 ± 3 s). The docking 

study provides mechanistic insight into their potential multi-target antithrombotic activities. 

Besides the butanol extract, liposomal F. arabica enhances antithrombotic efficacy at lower 

doses, supporting its potential as a natural therapeutic candidate for thrombotic disorders.
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1. Biological studies

Table S.1 In vitro thrombolytic effects of F. arabica fractions and standard controls

Sample % Clot lysis ±SD

Normal saline 18.31 0.42

Heparin 15.575 2.155

F. arabica 80% hydro-methanolic 

extract

23.385 0.235

F. arabica DCM fraction 12.17 0.73

F. arabica ethyl acetate fraction 6.655 0.175

F. arabica butanol fraction 29.505 0.095

F. arabica remaining aqueous fraction 24.13 0.09

2. Phytochemical studies of the most biologically active fraction

2.1. LC-ESI-MS/MS Fragmentation of the butanol fraction

Fig. S.1. Peak 1 MS/MS fragmentation
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Fig. S.2. Peak 2 MS/MS fragmentation

Fig. S.3. Peak 3 MS/MS fragmentation

Peak 2
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Fig. S.4. Peak 4 MS/MS fragmentation

Fig. S.5. Peak 5 MS/MS fragmentation
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Fig. S.6. Peak 6 MS/MS fragmentation

Fig. S.7. Peak 7 MS/MS fragmentation

Fig. S.8. Peak 8 MS/MS fragmentation
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Fig. S.9. Peak 9 MS/MS fragmentation

Fig. S.10. Peak 10 MS/MS fragmentation

Fig. S.11. Peak 11 MS/MS fragmentation



8

Fig. S.12. Peak 12 MS/MS fragmentation

Fig. S.13. Peak 13 MS/MS fragmentation
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Fig. S.14. Peak 14 MS/MS fragmentation

Fig. S.15. Peak 15 MS/MS fragmentation
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Fig. S.16. Peak 16 MS/MS fragmentation

Fig. S.17. Peak 17 MS/MS fragmentation
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Fig. S.18. Peak 18 MS/MS fragmentation

Fig. S.19. Peak 19 MS/MS fragmentation
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Fig. S.20. Peak 20 MS/MS fragmentation

Fig. S.21. Peak 21 MS/MS fragmentation
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Fig. S.22. Peak 22 MS/MS fragmentation
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2.2.  Structure elucidation of isolated compounds of the butanol fraction
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Fig. S.23. Structures of the isolated and identified saponins from F. arabica L. butanol fraction; 
(1): β-sitosterol glucoside, (2): 3-β-D-D-xylopyranosyl(1→2)-[β-D-glucopyranosyl (1→3)]-α-L-
arabinopyranosyl 27-hydroxyoleanolic acid, 28-O-β-D-glucopyranoside, (3): 3-O-β-D-
xylopyranosyl (1→2)-[β-D-glucopyranosyl (1→3)-α-L-arabinopyranosyl 27-hydroxyursolicacid 
28-O-β-D-glucopyranoside , (4): 3-O-β-D-xylopyranosyl(1→2)-[β-D-glucopyranosyl(1→3)]-α-L-
arabinopyranosyl oleanolic acid 28-O-β-D-glucopyranoside , and  (5): 3-β-D-
xylopyranosyl(1→2)-[β-D-glucopyranosyl(1→3)]-α-L-arabinopyranosyl ursolic acid 28-O-β-D-
glucopyranoside.
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Table S.2. 1H (400 MHz) and 13C NMR data (101 MHz) for compound 1 in pyridine-d5. 

No. δH (J in Hz)  δc APT HMBC
1 0.97, 1.73 m 37.27 CH2
2 1.30, 1.76 m 30.05 CH2
3 3.93, m 78.28 CH
4 2.47 t, 2.71 d (13.4) 39.13 CH2
5 140.70 C
6 5.34 d, (5.3) 121.71 CH
7 1.52 m, 1.86 m 31.96 CH2
8 1.91 m 31.84 CH
9 0.89 m 50.13 CH C-10
10 36.71 C
11 0.90 m, 1.42 m 21.06 CH2
12 1.95 m, 1.90 m 39.73 CH2
13 42.26 C
14 0.93 m 56.60 CH
15 1.28 m 24.29 CH2
16 1.83 m 28.33 CH2
17 1.10 m 56.03 CH
18 0.64, s 11.76 CH3 C-12, C-13, C-14, C-17
19 0.92, s 19.21 CH3 C-1, C-5, C-9, C-10
20 1.37 m 36.17 CH
21 0.97, d (6.4) 18.79 CH3 C-17, C-20, C-22
22 1.06 m, 1.38 m 33.99 CH2
23 1.24 m 26.84 CH2
24 0.98 m 45.83 CH
25 1.96 m 29.25 CH
26 0.85, d, 7.4 19.76 CH3 C-24, C-25, C-27
27 0.83, d, 7.6 18.99 CH3 C-24, C-25, C-26
28 0.90 m, 1.07 m 23.18 CH2
29 0.87, t, 7.5 11.94 CH3 C-24, C-28
3-O-β-D-glucopyranose
1` 5.05, d, 7.6 102.37 CH
2` 4.05, t, 7.9 75.14 CH
3` 4.29, m 78.41 CH
4` 7.27, m 71.49 CH
5` 3.97, m 77.89 CH
6`a
6`b

4.56, brd, 10.9
4.41, dd, 11.3, 4.8

62.63 CH2
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Table S.3 1H (400 MHz) and 13C NMR data (101 MHz) for compound 4 in pyridine-d5. 

Position APT δC δH
1 CH2 38.7 0.87 (a)

1.48 (e) (m, overlapped)
2 CH2 26.5 1.82 (a)

2.08 (e)
3 CH 89.0 3.24 (dd, J = 11.7, 4.4 Hz, 

2H)
4 C 39.7 -
5 CH 55.8 0.77 (m)
6 CH2 18.3 1.32 (a)

1.48 (e)
7 CH2 32.3 1.75 (m)
8 C 39.9 -
9 CH 47.8 1.59 (dd, J = 16.9, 6.5 Hz)
10 C 36.8 -
11 CH2 23.8 1.98 (m)
12 CH 123.0 5.43 (m)
13 C 143.9 -
14 C 41.9 -
15 CH2 28.4 1.15 (a)

2.42 (e)
16 CH2 23.2 2.08 (a)

1.87 (e)
17 C 48.1 -
18 CH 41.5 3.15 (m)
19 CH2 46.8 1.20 (a)

1.74 (e)
20 C 29.7 -
21 CH2 34.2 1.01 (m)
22 CH2 33.3 1.32 (a)

1.48 (e)
23 CH3 27.6 1.26 (s)
24 CH3 17.4 1.12 (s)
25 CH3 15.5 0.85 (s)
26 CH3 16.3 1.08 (s)
27 CH3 25.9 1.23 (s)
28 C 176.2 -
29 CH3 32.9 0.89 (s)
30 CH3 23.4 0.86 (s)
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Table S.4. 13C NMR chemical shifts of sugar moieties of saponin 4 in pyridine-d5 (ppm)

C δc δH
3-O-Arabinose
1 105.5 4.73 (d, J = 7.2 Hz)
2 77.2 4.66 (dd, J = 9.1, 7.2 Hz)
3 83.8 4.26
4 68.8 4.49
5 66.0 3.62
3-O-Xylose
1 104.9 5.39 (d, J = 7.7 Hz)
2 75.2 3.99
3 78.9 4.10
4 71.3 4.20
5 66.9 3.43 (t)
3-O-Glucose
1 104.9 5.30 (d, J = 7.7 Hz)
2 75.1 4.02
3 78.6 4.28
4 70.9 4.35
5 78.2 3.92
6 62.3 4.32
28-O-Glucose
1 95.5 6.32 (d, J = 8.1 Hz)
2 73.8 4.20
3 78.2 4.21
4 70.7 3.61
5 79.17 4.02
6 62.1 4.44

Table S.5. 13C-NMR shifts for differentiating oleanolic and ursolic acid and their 27-hydroxy 

analogues in pyridine-d5 (ppm)

C Oleanolic acid Ursolic acid 27-OH Oleanolic 27-OH Ursolic
12 (CH) 123.8 123.8 129.8 131.2
13 (C) 143.9 135.8 138.2 138.2
14 (C) 40.7 41.0 46.0 48.1
15 (CH2) 29.7 29.7 26.5 26.5
17 (C) 47.0 47.9 48.1 48.1
18 (CH) 41.5 53.1 41.5 53.1
19 46.8 (CH2) 39.1 (CH) 46.8 (CH2) 39.1 (CH)
20 29.7 (C) 39.1 (CH3) 30.5 (C) 39.1 (CH3)
21 (CH2) 35.2 29.7 33.3 30.5
22 (CH2) 32.3 36.9 32.3 36.8
27 (CH3) 25.9 23.6 64.2 64.2
29 (CH3) 33.3 17.7 32.9 18.0
30 (CH3) 23.4 21.1 23.6 21.1
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Fig. S.24. 1H (400 MHz) for compound 1 in pyridine-d5. 
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Fig. S.25. 13C NMR data (101 MHz) for compound 1 in pyridine-d5

Fig. S.26. HSQC data for compound 1 in pyridine-d5
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Fig. S.27. HMBC data for compound 1 in pyridine-d5
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Fig. S.28. 1H (400 MHz) for a mix of compounds 2 and 3 in pyridine-d5. 
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Fig. 30. HSQC data for a mix of compounds 2 and 3 in pyridine-d5
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Fig. 31. HMBC data for a mix of compounds 2 and 3 in pyridine-d5
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Fig. S.32 1H (400 MHz) for a mix of compounds 4 and 5 in pyridine-d5. 
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Fig. S.33 (b) 13C NMR data (101 MHz) for a mix of compounds 4 and 5 in pyridine-d5


