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Abstract

Fagonia arabica "Dhamasa" is traditionally used in Ayurvedic and Unani medicine across South
Asia and the Middle East for its therapeutic properties, notably as a natural blood purifier. It is
believed to aid in dissolving blood clots and reducing the risk of brain hemorrhage and
cardiovascular events. Given previous reports of saponin content in F. arabica, this study aimed
to evaluate its thrombolytic and anticoagulant potential. After confirming its saponin richness
through NMR (1D, 2D) and LC-MS, we developed liposomal nanoparticles to enhance
bioavailability and target clot dissolution more effectively. Liposomes were characterized using
TEM, particle size, PDI, and zeta potential. /n vitro thrombolytic and anticoagulant activities
were assessed, followed by in vivo testing in adult Wistar rats. The dose-dependent effects of the
saponin-rich n-butanol fraction of F. arabica on Antithrombin-III levels were evaluated using an
in vitro quantitative immunoturbidimetric assay. Coagulation parameters were evaluated using
aPTT and PT assays. A molecular docking study was systematically performed on nine targets
using the five structurally elucidated steroidal and terpenoid glycosides to predict and evaluate
their binding affinities. These computational findings were designed to complement ongoing in
vitro and in vivo investigations. The butanol extract showed significant in vitro thrombolytic and
anticoagulant effects at 40 mg/mL. The results demonstrate that the saponin-rich fraction
modulates Antithrombin-III in a concentration-dependent manner. Liposomal nanoparticles
achieved similar efficacy in vivo at just 3 mg/kg, compared to 100 mg/kg for the non-nano
extract. The liposomal group showed PT of 35 + 4 s and aPTT >180 s, outperforming the non-
nano extract (PT 30 =7 s, aPTT >180 s) and controls (PT 12 + 2 s, aPTT 37 + 3 s). The docking
study provides mechanistic insight into their potential multi-target antithrombotic activities.
Besides the butanol extract, liposomal F. arabica enhances antithrombotic efficacy at lower

doses, supporting its potential as a natural therapeutic candidate for thrombotic disorders.
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1. Biological studies

Table S.1 /n vitro thrombolytic effects of F. arabica fractions and standard controls
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Fig. S.1. Peak 1 MS/MS fragmentation

Sample % Clot lysis | £SD
Normal saline 18.31 0.42
Heparin 15.575 2.155
F. arabica 80% hydro-methanolic 23.385 0.235
extract

F. arabica DCM fraction 12.17 0.73
F. arabica ethyl acetate fraction 6.655 0.175
F. arabica butanol fraction 29.505 0.095
F. arabica remaining aqueous fraction 24.13 0.09
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Fig. S.6. Peak 6 MS/MS fragmentation
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2.2. Structure elucidation of isolated compounds of the butanol fraction
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Fig. S.23. Structures of the isolated and identified saponins from F. arabica L. butanol fraction;
(1): p-sitosterol glucoside, (2): 3-f-D-D-xylopyranosyl(1—2)-[3-D-glucopyranosyl (1—3)]-a-L-
arabinopyranosyl 27-hydroxyoleanolic acid, 28-O-f-D-glucopyranoside, (3): 3-O-f$-D-
xylopyranosyl (1—2)-[f-D-glucopyranosyl (1—3)-a-L-arabinopyranosyl 27-hydroxyursolicacid
28-0-f-D-glucopyranoside , (4): 3-O-f-D-xylopyranosyl(1—2)-[f-D-glucopyranosyl(1—3)]-a-L-
arabinopyranosyl oleanolic acid 28-O-f-D-glucopyranoside , and (5): 3-p-D-
xylopyranosyl(1—2)-[f-D-glucopyranosyl(1—3)]-a-L-arabinopyranosyl ursolic acid 28-O-f-D-
glucopyranoside.
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Table S.2. 'H (400 MHz) and '3C NMR data (101 MHz) for compound 1 in pyridine-ds.

No. oy (Jin Hz) Je APT HMBC

1 0.97,1.73m 37.27 | CH,

2 1.30,1.76 m 30.05 | CH,

3 393, m 78.28 | CH

4 247t,271d(13.4) | 39.13 | CH,

5 140.70 | C

6 5.344d,(5.3) 121.71 | CH

7 1.52m, 1.86 m 31.96 | CH,

8 191 m 31.84 | CH

9 0.89 m 50.13 | CH | C-10

10 36.71 | C

11 [ 090m,1.42m 21.06 | CH,

12 | 1.95m,1.90 m 39.73 | CH,

13 4226 | C

14 [ 093 m 56.60 | CH

15 [ 1.28m 24.29 | CH,

16 | 1.83m 28.33 | CH,

17 [ 1.10m 56.03 | CH

18 | 0.64,s 11.76 | CH; | C-12,C-13, C-14, C-17
19 [0.92,s 19.21 | CH; | C-1,C-5,C-9, C-10
20 | 1.37m 36.17 | CH

21 10.97,d(6.4) 18.79 | CH; | C-17, C-20, C-22
22 | 1.06 m, 1.38 m 33.99 | CH,

23 | 1.24m 26.84 | CH,

24 | 098 m 4583 | CH

25 | 1.96 m 29.25 | CH

26 |0.85,d,74 19.76 | CH; | C-24, C-25, C-27
27 10.83,d,7.6 18.99 | CH; | C-24, C-25,C-26
28 [ 0.90m, 1.07 m 23.18 | CH,

29 |0.87,t,7.5 11.94 | CH; | C-24, C-28
3-O-f-D-glucopyranose

I 5.05,d,7.6 102.37 | CH

2" 14.05t79 75.14 | CH

37 1429, m 78.41 | CH

4 7.27, m 7149 | CH

5 397, m 77.89 | CH

6'a | 4.56, brd, 10.9 62.63 | CH,

6'b | 441,dd,11.3,4.8
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Table S.3 'H (400 MHz) and '3C NMR data (101 MHz) for compound 4 in pyridine-ds.

Position | APT dc Oy
1 CH, | 38.7 0.87 (a)
1.48 (e) (m, overlapped)

2 CH, | 26.5 1.82 (a)
2.08 (e)

3 CH 89.0 3.24(dd,J=11.7,4.4 Hz,

2H)

4 C 39.7 -

5 CH 55.8 0.77 (m)

6 CH, | 183 1.32 (a)
1.48 (e)

7 CH, | 323 1.75 (m)

8 C 39.9 -

9 CH 47.8 1.59 (dd, J=16.9, 6.5 Hz)

10 C 36.8 -

11 CH, | 23.8 1.98 (m)

12 CH | 123.0 5.43 (m)

13 C 143.9 -

14 C 41.9 -

15 CH, | 284 1.15 (a)
2.42 (e)

16 CH, | 232 2.08 (a)
1.87 (e)

17 C 48.1 -

18 CH 41.5 3.15 (m)

19 CH, | 46.8 1.20 (a)
1.74 (e)

20 C 29.7 -

21 CH, | 34.2 1.01 (m)

22 CH, | 333 1.32 (a)
1.48 (e)

23 CH; | 27.6 1.26 (s)

24 CH; | 174 1.12 (s)

25 CH; | 155 0.85 (s)

26 CH; | 16.3 1.08 (s)

27 CH; | 259 1.23 (s)

28 C 176.2 -

29 CH; | 329 0.89 (s)

30 CH; | 234 0.86 (s)
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Table S.4. 3C NMR chemical shifts of sugar moieties of saponin 4 in pyridine-ds (ppm)

C| oc | oy
3-0-Arabinose

1 | 1055 4.73 (d,J=17.2 Hz)
2 | 77.2 | 4.66(dd,J=9.1,7.2 Hz)
3 | 83.8 4.26

4 | 68.8 4.49

5 | 66.0 3.62
3-0-Xylose

1 | 1049 5.39(d,J=17.7Hz)
2 | 752 3.99

3 | 789 4.10

4 | 713 4.20

5 | 66.9 343 ()
3-0-Glucose

1 | 1049 5.30(d,J=17.7Hz)
2 | 75.1 4.02

3 | 78.6 4.28

4 | 709 4.35

5| 78.2 3.92

6 | 623 4.32
28-0-Glucose

1| 955 6.32 (d,/=8.1 Hz)
2 | 73.8 4.20

3| 782 421

4 | 70.7 3.61

5 | 79.17 4.02

6 | 62.1 4.44

Table S.5. 3C-NMR shifts for differentiating oleanolic and ursolic acid and their 27-hydroxy

analogues in pyridine-ds (ppm)

C Oleanolic acid | Ursolic acid | 27-OH Oleanolic | 27-OH Ursolic
12 (CH) | 123.8 123.8 129.8 131.2

13 (O) 143.9 135.8 138.2 138.2

14 (O) 40.7 41.0 46.0 48.1

15 (CH,) | 29.7 29.7 26.5 26.5

17 (C) 47.0 47.9 48.1 48.1

18 (CH) | 41.5 53.1 41.5 53.1

19 46.8 (CH,) 39.1 (CH) 46.8 (CH,) 39.1 (CH)
20 29.7 (C) 39.1 (CHy) | 30.5(0C) 39.1 (CHy)
21 (CH,) | 35.2 29.7 33.3 30.5

22 (CH,) | 32.3 36.9 32.3 36.8

27 (CH;) | 25.9 23.6 64.2 64.2

29 (CH;) | 33.3 17.7 32.9 18.0
30(CH;) | 23.4 21.1 23.6 21.1
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Fig. S.25. 3C NMR data (101 MHz) for compound 1 in pyridine-ds
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Fig. S.27. HMBC data for compound 1 in pyridine-ds

{90000

I~ 85000

3.99

[~ 80000

- 75000

L 50000 70000

- 65000

[~ 60000

L

5

S
(o

- 55000
3 2

1 ((ppm)
50000

[-45000
{~40000
, - 35000
!

- 30000

{~25000

{~20000

- 15000

N

vy A\

T
1.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4(5 4.0 3.5 3.0 25 2.0 115 1.0 0.5
1 (ppm)

Fig. S.28. 'H (400 MHz) for a mix of compounds 2 and 3 in pyridine-ds.

§§ Bk EEEE]: EE] skftrlRar EERd33A2928323 ashzz=

77777

[ oo

55555

55555

55555

nnnnn

[ 4500

[ 4000

00000

ooooo

00000

[ 2000

[ 1500

[ 1000

| . | | i | . . TR “\"A’ “J Il JL;‘ ; bl ::“

U |l Al L v 1 [ ' ‘ )"[}‘F‘T‘r y‘ "”H "ﬂ T ‘:" np{} 77777

| [ 1000

= oo =b Py oo vy ia 1o RYRRES ad 7o - o P & ER

Fig. S.29. 3C NMR data (101 MHz) for a mix of compounds 2 and 3 in pyridine-ds

20



\
M
il A
o
= [
.:%g T Lo
= g e
» H
[-—J -90
@
90 as 8o 7s 70 es 6o s s0 45 4o 35 30 25 20 | 1s 1o o5
2 (ppm)
Fig. 30. HSQC data for a mix of compounds 2 and 3 in pyridine-ds
|
| X, ’\x 1!
| WW ]‘1 |
r‘ f“\& M PR | .m/\m /\/) VL
0, SO =y = = B v S > L e e
-5 L am@" “ k20
: = D 0V m‘ L4 o
3 r %}ﬁl
— ol ; L a0
= u i 8 [,
s “ w0 %
— . 60
E S Iy
=il ® . t70
= ] " é%;%J’ [ o
- ) 0 [
% [} 0: 0 Feo
- ] £
f-100 ]
= 8 L] I 2
110
2 ° ) e } . ' . 120
3 ) o ) ' k130
3 e ! ! ) “ b L 140
E B . 0
[ 0 8 o0 9 F-150
. . 160
L) 170
ol
180
50 85 80 75 | 70 65 60 55 50 45 40 35 | 30 25\ 20 15 10 05
2 (ppm)

Fig. 31. HMBC data for a mix of compounds 2 and 3 in pyridine-ds

21



fNOoORNmoBLmoRLMnMOoROhm oo sdNO A DO N Eﬂwl\mﬂmmowmwoﬂmwr\mrMNDa\wwr\MNa\w\D\Dmomr\n
PR AR IR ARANRRERRNRAREIEJSC888 825 8R RN ARRLLISARRRRNRARIEENANGE8888854 3
BT T T T T T T T T T TR ST T T T TTAAANNFArd|dri i dddddd i dddddddddddPoo b L 44000
(42000
(40000
38000
mv«v«o-«mmimvmmommowmr\mvvwogmr\omw 36000
NNNAMNNFNANNR T TGS 00 a0 ®®Q® e
YT rirdrdfidrddddii{icccccoBoocoo
R e e e et | | 40000 T1 (dd)|| It (m) S(s)| Fes)
4.67 || 4.15 1.29] 0.92 [~ 34000
28-0-Glc H-1 (d)| | 3-0-Glc H-1 (d)| | Q1 (m)|| E1 (m)]| H-18 (m) H-2 (a), H-11 (m) CH3-25 (5)| | 35000
L 30000 6.33 5.29 443 | 3.92 3.34 1.98 0.86
28-0-Glc H-1 (d)| | H-12 (s)||[Ara H-1 (d)| D1 (m)| H-3 (m) H{19 (a) (m)| | CH3-29 (s)| |-30000
6.27 5.42 4.74 3.72 | 3.20 1.7 0.85
, 29000 28000
Xyl H-1 (d R1 (m)| F1 (m) H-2 (), H-16((e) (m) CH3-30 (s)
ol 5.38 4.49 || 3.99 211 0.89
{26000
| .
| L 1doco G1 (t) H-22(e) (m)| | CH3-26 (s)
| 4.02 1(89 0.97 [ 24000
I
| | bl \ W 1 (m)
L A N T Lo 418 22000
T T T T T T
6 5 3 2 ! 20000
1 (pprh)
H-15 (i,
118 18000
{16000
{14000
{12000
I
10000
(8000
(6000
| | N I
! t (4000
| L | C | k m
‘ I il il
I ) I, 2000
/ b [ TR 1o ! |
i IV AA D \/
L. u A “_ Lo
T T T T T T T T T T T T T T T T T T T T T T T T
120 115 110 105 100 | 95 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
1 (ppm)

Fig. S.32 'H (400 MHz) for a mix of compounds 4 and 5 in pyridine-ds.
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Fig. S.33 (b) *C NMR data (101 MHz) for a mix of compounds 4 and 5 in pyridine-ds
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