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Table S1. Summary of cobalt(II) and copper(II) compounds exhibiting SIM or SMM behavior, compiled from an extensive literature survey.

Formula Nature Geometry External 
field (kOe) Ueff/KB (K) τ0 (s) D(cm-1) Magnetic 

behavior Effect Ref.

[Co4(phen)4Cl8] Complex Distorted 
octahedral -- 8.41 5.29x10−7 -- SMM QTM 1

[Co4(phen)4Cl8] Complex Distorted 
octahedral 1.0 14.04 2.87x10−8 -- SMM QTM 1

dmphCoBr Complex Distorted 
tetrahedron 1.0 22.8(8) 3.7(5)x10−10 10.62 SMM Orbach 2

[Co(biq)Cl2] Complex Distorted 
tetrahedron 2.0 42.6(5) 1.9(3)x10−10 10.5 SMM Direct 

Orbach 3

[Co(biq)Cl2] Complex Distorted 
tetrahedron 3.0 41.2(13) 3.0(12)x10−10 10.5 SMM Direct 

Orbach 3

[Co(biq)Br2] Complex Distorted 
tetrahedron 2.0 39.6(91) 1.2x10−10 12.5 SMM Direct 

Orbach 3

[Co(biq)Br2] Complex Distorted 
tetrahedron 3.0 42.3(6) 5.0(9)x10−11 12.5 SMM Direct 

Orbach 3

[Co(biq)I2] Complex Distorted 
tetrahedron 2.0 57.0(7) 3.2(6)x10−13 10.3 SMM Direct 

Orbach 3

[Co(biq)I2] Complex Distorted 
tetrahedron 3.0 38.7(37) 9.9(9)x10−11 10.3 SMM Direct 

Orbach 3

C16H52B20N2S4Co Complex Distorted 
tetrahedral -- 38.5(6) 3.3x10−6 -71.6 SMM QTM 

Raman 4

[Co(dmphen)Br2] Complex Distorted 
tetrahedron 2.0 64.5(41) 6.8(75)x10−14 13.8 SMM

Orbach 
Direct 
QTM

5

[Co(dmphen)Br2] Complex Distorted 
tetrahedron 4.0 35.0(50) 3.0(41)x10−10 13.8 SMM

Orbach 
Direct 
QTM

5

[Co(dmphen)I2] Complex Distorted 
tetrahedron 2.0 69.6(30) 2.1(18) x10−14 16.6 SMM

Orbach 
Direct 
QTM

5



[Co(dmphen)I2] Complex Distorted 
tetrahedron 4.0 41.5(41) 0.64(70)x10−10 16.6 SMM

Orbach 
Direct 
QTM

5

[Co(NS3
tBu)NCS]ClO4 Complex Trigonal 

bipyramidal -- 20 2.0x10−9 -11 SMM Direct 
Raman 6

[Co(N3)L1*H3]Cl4 Complex Trigonal 
bipyramidal 0.5 21.58(2) 5.0x10−9 -7.1 SMM Orbach 7

[Co4(mbm)4Br4-
(CH3OH)4]

Complex Distorted 
octahedral -- 26.7 1.3x10−9 -- SMM QTM 8

[Co4(mbm)4Br4-
(CH3OH)4]

Complex Distorted 
octahedral 0.75 26.7 1.3x10−9 -- SMM QTM 8

[Co4(mbm)4Br4-
(CH3CH2OH)4]

Complex Distorted 
octahedral -- 21 9.7x10−9 -- SMM QTM 8

[Co4(mbm)4Br4-
(CH3CH2OH)4]

Complex Distorted 
octahedral 0.75 26 5.6x10−9 -- SMM QTM 8

[Co3(Himn)6]Cl2·2CH3
OH Complex Trigonal 

antiprism -- 58.99 6.76x10−8 -112.0 SMM Raman 
Orbach 9

[CoII(L2*)2](DPAS)2· 
DMF Complex Distorted 

octahedral 1.0 34.1 2.1x10−7 -75.1(8) SMM Raman 
Direct 10

[CoII(bppCOOH)2] 
(ClO4)2·2Me2CO Complex Distorted 

octahedral -- 15.9 2.7x10−6 51.6 SMM Raman 11

[Co(H2daps)(MeOH)2] Complex Pentagonal 
bipyramidal 1.0 33.5 7.4x10−6 43.1(7) SMM QTM 

Raman 12

[Co(H4daps)(NCS)(Me
OH)]·(ClO4)·(MeOH) Complex Pentagonal 

bipyramidal 1.0 28.4 5.6x10−6 41.5(6) SMM QTM 
Raman 12

[Co(H4daps)(NCS)2]· 
(MeOH)2

Complex Pentagonal 
bipyramidal 1.0 23.6 4.8x10−6 38.8(2) SMM QTM 

Raman 12

[Co(abpt)2(N3)2]
3D 

Supramolecular 
network

Distorted 
octahedral -- 29 7.7x10−7 -24.1 SMM

Direct 
Raman 
Orbach

13

[Co(half-Pc)2] Complex Pseudotetra- 
hedral -- 77.7(7) 3.17x10−10 -27.9 SMM Orbach 14



[Co(pyterpy)(NO3)2] 1D Complex Octahedral 1.0 4.24 3.02x10−5 70.4 SMM Orbach 15
[CoLdiProp(CH3CN)] 

(ClO4)2
Complex Trigonal 

prismatic -- 13(1) 4.3(12)x10−6 -25.8 SMM Orbach 
Direct 16

[Co(tppz)2][Co2 
(H2mpba)3]·9H2O

Complex Octahedral 1.0 17.8(2) 3.2(1) x10−7 79.2 SMM Direct 
Raman 17

[Co(tppz)2][Co2 
(H2mpba)3]·9H2O

Complex Octahedral 2.0 14.4(1) 6.5(1)x10−7 79.2 SMM Direct 
Raman 17

[Co(L3*)](ClO4)2· 
2CH3OH Complex Trigonal 

prismatic -- 38.6(7) 1.7(1)x10−6 -116.6(6) SMM Raman 
QTM 18

[Co(L3*)](BF4)2· 
2CH3OH Complex Trigonal 

prismatic -- 39.2(4) 1.85(5)x10−6 -127.6(8) SMM Raman 
QTM 18

[Co(L3*)(SCN)2] Complex Distorted 
octahedral -- 10.30(7) 1.2(2)x10−5 34.7(1) SMM Direct 

QTM 18

[Co(3C16bzimpy)2] 
(BF4)2

Complex Octahedral 1.0 7.0(66) 2.5x10−5 49.65 SMM Orbach 19

[{(PyPz3)Co}2(dhbq)] 
[PF6]2

Complex Trigonal 
prismatic -- 97(3) 7.8(1)x10−8 -78.5 SMM

QTM 
Orbach 
Raman

20

[{(PyPz3)Co}2(dhbq)] 
[PF6]2

Complex Trigonal 
prismatic 1.0 124(6) 2.0(4)x10−11 -78.5 SMM

QTM 
Orbach 
Raman

20

[Co(CH3COO)2 
(C2H5N)2(H2O)2]

Complex Pseudo-
octahedral 1.5 25.0 6.7x10-7 -- SMM Orbach 21

[Co(bzpy)4(NCS)2] Complex
Distorted 
tetragonal 

bipyramidal
2.0 22.9 1.16x10-6 90.5 SMM Orbach 22

[Co(bzpy)4(NCS)2] Complex
Distorted 
tetragonal 

bipyramidal
4.0 27.7 0.31x10-6 90.5 SMM Orbach 22

[Co(4-HOpa)2(H2O)2] Complex Distorted  
octahedral 1.0 46 -- 71.35 SMM Bottleneck

Raman 23

α-[Co(3,5-Hdnb)2(py)2 Complex Distorted 1.0 28.1(6) 1.37x10−7 58 SIM Direct 24



(H2O)2] octahedral Raman
β-[Co(3,5-Hdnb)2(py)2 

(H2O)2]
Complex Octahedral 1.0 30.3(9) 3.4x10−8 68 SIM Direct 

Raman 24

[Co(pydm)2](dnbz)2 Complex
Distorted 
tetragonal 
bipyramid

-- 44.1(8) 2.8(4)x10−9 44 SIM QTM 
Raman 25

{[Co(bmzbc)2]· 
2DMF}n

3D Metal-organic 
framework Octahedral -- 11.8 1.3x10−5 53.2 SIM QTM 26

[Co(bpeb)2(NCS)2]· 
7DCB

2D Metal-organic 
framework

Distorted 
octahedral 0.25 43.06 0.23x10−7 64.9(9) SIM Orbach 

Raman 27

[Co(bpeb)2(NCS)2]· 
7DCB

2D Metal-organic 
framework

Distorted 
octahedral 0.5 42.05 0.27x10−7 64.9(9) SIM Orbach 

Raman 27

[Co(bpeb)2(NCS)2]· 
7DCB

2D Metal-organic 
framework

Distorted 
octahedral 1.0 45.07 0.17x10−7 64.9(9) SIM Orbach 

Raman 27

[Co(bpeb)2(NCS)2]. 
4TAN.4MeOH

2D Metal-organic 
framework

Distorted 
octahedral 1.0 24.62 2.27x10−7 67.1(9) SIM Orbach 

Raman 27

[Co(bpeb)2(NCS)2]. 
6TOL

2D Metal-organic 
framework

Distorted 
octahedral 1.0 16.56 8.22x10−7 84.4(4) SIM Orbach 

Raman 27

[Co(bpeb)2(NCS)2]. 
8PYR

2D Metal-organic 
framework

Distorted 
octahedral 1.0 30.24 1.30x10−7 70.3(9) SIM Orbach 

Raman 27

[Co(tdmmb)(bpe)] 
[BF4]2·2CH3CN

1D Coordination 
polymer

Distorted 
pentagonal 
bipyramidal

1.0 19 7.5x10−6 21.7(7) SIM QTM 28

Et4N[CoII(hfac)3] Complex Distorted 
octahedral 0.0 18(2) 9(5)x10−6 117.8 SIM

Direct 
Raman 
Orbach

29

Et4N[CoII(hfac)3] Complex Distorted 
octahedral 1.0 20.6(5) 6.4(9)x10−6 117.8 SIM

Direct 
Raman 
Orbach

29

[Co(bmim)2(SCN)2] Complex Distorted 
tetrahedral 0.5 22.03 2.15x10−9 -7.5 SIM Orbach 30

[Co(bmim)2(SCN)2] Complex Distorted 1.0 22.46 2.08x10−9 -7.5 SIM Orbach 30



tetrahedral

[Co(bmim)2(SCN)2] Complex Distorted 
tetrahedral 2.5 5.20 3.61x10−9 -7.5 SIM Orbach 30

[Co(bmim)2(NCO)2] Complex Distorted 
tetrahedral 1.0 15.55 6.80x10−9 6.3 SIM Orbach 30

[Co(bmim)2(NCO)2] Complex Distorted 
tetrahedral 2.5 13.97 1.70x10−8 6.3 SIM Orbach 30

[Co(bmim)2(N3)2] Complex Distorted 
tetrahedral 1.0 9.61 2.5x10−8 6.7 SIM Orbach 30

[Co(bmim)2(N3)2] Complex Distorted 
tetrahedral 2.5 10.81 3.20x10−8 6.7 SIM Orbach 30

[Co(L4*)2Cl2] Complex Distorted 
tetrahedral 1.2 26.2 3.69x10−10 -18.1 SIM Orbach 31

[Co(L4*)2Br2] Complex Distorted 
tetrahedral 2.75 22.9 2x10−8 -16.4 SIM

QTM 
Raman 
Orbach

31

[Co(L4*)2I2] Complex Distorted 
tetrahedral 1.7 27.8 1.22x10−8 -22.0 SIM

QTM 
Raman 
Orbach

31

[CoII(L5*)2](ClO4)2 Complex
Distorted 
triangular 

dodecahedron
0.5 44 7.4x10−9 -29.4 SIM Orbach 

Raman 32

[CoII(L6*)2](ClO4)2 Complex
Distorted 
triangular 

dodecahedron
0.5 20 3.9x10−9 -40.5 SIM Orbach 

Raman 32

[CoII(L7*)2](ClO4)2 Complex
Distorted 
triangular 

dodecahedron
0.5 18 2.3x10−7 -22.0 SIM Orbach 

Raman 32

[CoII(L8*)2](ClO4)2 Complex
Distorted 
triangular 

dodecahedron
0.5 31 3.9x10−9 -15.8 SIM Orbach 

Raman 32

{[Co2(dmphen)2(CPC
A)2]DMF}n

1D Coordination 
polymer

Distorted 
trigonal 5.0 9.2 9.1x10−5 38.2(4) SIM QTM 

Orbach 33



prismatic

[Co(C10-terpy)2](BF4)2 Complex Distorted 
octahedral 1.0 13.8(9) 1.1(4)x10−5 47.5 SIM Orbach 

Raman 34

[Co(dmphen)2 
(OOCPh)]ClO4· 

0.5H2O·1/2CH3OH
Complex Distorted 

octahedral 0.5 9.80(14) 1.62(10)x10−6 61.9 SIM Orbach 35

[Co(dmphen)2 
(OOCPh)]ClO4· 

1/2H2O·1/2CH3OH
Complex Distorted 

octahedral 1.0 8.89(16) 4.2(3)x10−6 61.9 SIM Orbach 35

[Co(dmphen)2 
(OOCPh)]ClO4· 

1/2H2O·1/2CH3OH
Complex Distorted 

octahedral 2.5 6.92(15) 11.5(8)x10−6 61.9 SIM Orbach 35

[Co(dmbipy)2 
(OOCPh)]ClO4

Complex Distorted 
octahedral 0.5 8.52(11) 1.44(7)x10−6 61.6 SIM Orbach 35

[Co(dmbipy)2 
(OOCPh)]ClO4

Complex Distorted 
octahedral 1.0 9.47(7) 1.42(4)x10−6 61.6 SIM Orbach 35

[Co(dmbipy)2 
(OOCPh)]ClO4

Complex Distorted 
octahedral 2.5 10.08(13) 1.45(7)x10−6 61.6 SIM Orbach 35

[CoII(BPA-TPA)] 
(BF4)2

Complex
Capped 
trigonal 

prismatic
1.0 39.7 1.53x10−9 21.4 SIM Orbach 

Raman 36

[CoL9*(NCS)2]·DMSO Complex
Distorted 
prismatic 
trigonal

1.0 35.6(9) 2.5(2)x10−5 -1538.0 SIM Orbach 37

[Co(N,N’-2-
iminopyrrolyl)2]

Complex Tetrahedral -- 85 2.1(1)x10−9 -42.6(4) SIM Orbach 
Raman 38

Co(H2DPA)·2H2O Complex Distorted 
octahedral 1.5 43.28 2.11x10−8 67.63(22) SIM Direct 

Raman 39

[Co(btca)1/2(mbpy)]n
1D Coordination 

polymer

Distorted 
trigonal 

bipyramidal
1.0 29.1 3.4x10−7 -37.2 SIM QTM 

Raman 40

{[Co(H2tbca)(bpb) 
(H2O)2]⋅bpb}n

2D Metal-organic 
framework

Distorted 
octahedral -- 31.8 -- 62.1 SIM Direct 

Raman 41



[L10*
2Co](TBA)2 Complex Distorted 

tetrahedral -- 325 1.46x10-10 -113.0 SIM Orbach 
Raman 42

[Co(CzPh2PO)2Cl2] Complex Distorted 
tetrahedral 1.0 28.9 2.51x10−9 -16.4 SIM Orbach 43

[Co(CzPh2PO)2Br2] Complex Distorted 
tetrahedral 1.0 22.7 5.19x10−9 -13.8 SIM Orbach 43

[Co(CzPh2PO)2I2] Complex Distorted 
tetrahedral 0.8 60.9 2.05x10−9 14.6 SIM Orbach 43

[Co(bcpp)Cl2] Complex Trigonal 
bipyramid 2.0 11.2 8.6x10−6 64.68 SIM Raman 44

[Co(bcpp)Br2] Complex Trigonal 
bipyramid 2.0 5.59 7.22x10−3 45.00 SIM Raman 44

[Co(12-TMC)(NCS)2]· 
0.5CH3OH Complex Distorted 

octahedral 6.0 23.23 3.0x10−8 32.10(0) SIM Orbach 45

[Co(12-TMC) 
(N(CN)2)2]

Complex Distorted 
octahedral 2.0 27.31 1.14x10−8 25.95(9) SIM Orbach 

Raman 45

[Co(12-TMC)(NCO)] 
[B(C6H5)4

Complex
Distorted 

square 
pyramidal

2.0 23.16 1.17x10−9 -- SIM Orbach 
Raman 45

[Co(dca)2(atz)2]n
2D Coordination 

polymer
Elongated 
octahedral 1.0 5.1 1.7x10−6 -- SIM Orbach 46

[Co(L11*)2(SCN)2· 
2(CH3CN)·2(dmf)]n

2D Coordination 
polymer

Distorted 
octahedral 1.0 36.9 1.4x10−6 41.6 SIM QTM 

Raman 47

[Co(ppad)2]n
2D Coordination 

polymer
Distorted 
octahedral 2.0 11.37 5.03x10−6 76 SIM Orbach 48

cis-[Co(dmphen)₂ 
(NCS)₂]·0.25EtOH Complex Distorted 

octahedral 1.0 23.33 4.37x10−7 98 SIM Orbach 49

cis-[Co(dmphen)₂ 
(NCS)₂]·0.25EtOH Complex Distorted 

octahedral 2.5 26.06 3.03x10−7 98 SIM Orbach 49

cis-[Co(dmphen)₂ 
(NCS)₂]·0.25EtOH Complex Distorted 

octahedral 5.0 23.90 4.02x10−7 98 SIM Orbach 49

[Co(dps)2Cl2]n 2D Complexes Distorted 1.5 11.0 2.38x10–5 27.2(1) SIM Orbach 50



octahedral Raman

[Co(dps)2Br2]n 2D Complexes Distorted 
octahedral 1.5 28.9 7.40x10–7 28.0(9) SIM QTM 

Direct 50

[Co(dps)2(H2O)2·I2· 
(H2O)4]n

2D Complexes Distorted 
octahedral 1.5 25.3 5.54x10–7 9.5(5) SIM QTM 

Direct 50

{[Co(H3BTB)2(phen)] 
(NO3)2}n

1D Coordination 
polymer

Distorted 
octahedral 2.0 12.1(3) 5.52(4)x10–7 74.7(3) SIM QTM 

Direct 51

[Co2(H2mpba)2 
(H2O)4]n·4nH2O

Coordination 
polymer

Distorted  
octahedral 2.0 110(10) 1.3(0.1)x10–10 79.0 SIM Orbach 52

[Co(dca)2(bim)4] Complex Distorted 
octahedral 2.5 7.74 0.87 x 10-6 69.6 SIM Raman 

Orbach 53

[Co(dca)2(bim)2]n
Coordination 

polymer
Distorted 
octahedral 2.5 5.33 1.54 x 10-6 74.3 SIM Orbach 53

[Co(dca)2(bmim)2]n
Coordination 

polymer
Distorted  
octahedral 2.5 13.81 0.63 x 10-6 75.8 SIM Orbach 53

[{Co(H2mpba)(dps)}. 
2DMSO]n

2D Coordination 
polymer

Distorted 
octahedral -- -- -- -103.7(7) SIM Bottleneck This 

work
[{Co(H2mpba)(dps)}. 

2DMSO]n

2D Coordination 
polymer

Distorted 
octahedral 1.0 56(3) 1.2(1)x10–8 -103.7(7) SIM Bottleneck

Orbach
This 
work

[{Cu(H2mpba)(dps)}. 
2DMSO.H2O]n

2D Coordination 
polymer

Distorted 
octahedral 1.0 -- -- -- SIM Bottleneck This 

work
phen= 1,10-phenanthroline; dmph= 2,9-dimethyl-1,10-phenanthroline; biq= 2,2'-biquinoline; dmphen= 2,9-dimethyl-1,10-phenantroline; NS3

tBu= 2-(tert-butylthio)-N-(2-(tert-
butylthio)ethyl)-N-((neopentylthio)methyl)ethan-1-amine; L1*= 6,16,2,5-tribenzena(1,4) 1,4,8,11,14,18,23,27-octaazabicyclo[9.9.9]nonaco-saphane; LC14= 4-tetradec-1-ynyl-2,6-di-
pyrazol-1-yl-pyridine; mbm= 1-Me-(1H-benzo[d]imidazol-2-yl)methanolate; Himn–= 2-(2-imidazolinyl)phenolate); L2*= 4' (4 Bromophe-nyl)2,2':6',2'' terpyridine; DPAS= 
4(phenylamino) benzenesulfonate; bppCOOH= 2,6-Di(1H-pyrazol-1-yl)isonicotinic acid; H4daps= 2,6-bis(1-salicyloylhy-drazonoethyl)pyridine; abpt= 4-amino-3,5-bis(pyridin-2-
yl)-1,2,4-triazole); half-Pc= (Z)-1-((1,1-dimethoxy-1H-isoindol-3-yl)imino)-3-iminoisoindolin-2-ide; pyterpy= 4′-(4′′′-pyridyl)-2,2′:6′2′′-terpyridine; LdiProp= (1,5,13,17,22 
pentaazatricyclo-[15.2.2.17,11]docosa-7,9,11(22)-triene);  tppz = 2,3,5,6 tetrakis(2-pyridyl)pyrazine; H4mpba= 1,3-phenylenebis(oxamic) acid); L3*= tris(pyridylhydrazonyl)phos-
phorylsulfide; 3C16-bzimpy= 2,2’-(4-hexade cyloxy-2,6-diyl)bis(1-hexadecyl-1H-benzo[d]imidazole); dhbq= 2,5-dioxo-1,4-benzoquinone;  bzpy= 4 benzylpyridine; 4-HOpa= N-
4-hydroxyphenyloxamate; 3,5-Hdnb= 3,5-dinitrobenzoic acid; py= pyridine;  pydm= 2,6pyridinedimethanol; dnbz= 3,5dinitrobenzoato; bmzbc= 4-(benzimidazole-1-yl)benzoate; 
bpeb= 1,4-bis(4'-Pyridylethynyl)benzene(bpeb); DCB= ortho-dichlorobenzene; TAN= thianthrene; TOL= toluene; PYR= pyrrole; tdmmb= 1,3,10,12-tetramethyl-1,2,11,12-tetra-
aza[3](2,6)pyridino[3](2,9)-1,10-phenanthrolinophan-2,10-diene; bpe= 1,2-di(4-pyridyl)ethane; hfac= hexafluoro-acetylacetonate; bmim= 1-benzyl-2-methylimidazole; L4*= 
Tetramethylthiourea; L5*= Dimethyl-1,10-phenanthroline-2,9-carboxylate; L6*= Dibutyl-1,10-phenanthroline-2,9-carboxylate; L7*= Dimethyl[2,2'-bipyridine]-6,6'-dicarboxylate; L8*= 
Dibutyl[2,2'-bipyridine]-6,6'-dicarboxylate; H2CPCA= 3-(3-carboxyphenyl)-1H-pyra zole-5-carboxylic acid; C10-terpy= 4′-alkoxy-2,2’:6′,2″-terpyridine; HOOCPh= benzoic acid; 



dmbipy= 6,6′-dimethyl-2,2′-bipyridine; BPA-TPA= [2,6-bis[bis(2pyridylmethyl)amino]-methyl]pyridine; L9*= 2,2′-((Butane-2,3-diylidene)-bis(hydrazin-1-yl-2-ylidene))bis (4,6-
dimethylpyrimidine); iminopyrrolyl= 5-(2,4,6-triisopropylphenyl)-2-(N-2,6-diisopropylphenylformimino)pyrrole; H2DPA= 2,6-pyridine-dicarboxylic acid; mbpy= 4,4’-Dimethyl-
2,2’-bipyridyl; btca= 1,2,4,5-Benzenetetracarboxylic acid; H2tbca= 1,2,4,5-Benzenetetracarboxylic acid; bpb= 1,4-bis(pyrid-4-yl)benzene; TBA= tetrabutylammonium;  L10*= 
N1,N2-bis(4-chlorophenyl)oxalamide; CzPh2PO= (9H-carbazol-9-yl)diphenylphosphineoxide; bcpp= bis(1-chloroimidazo[1,5-a]pyridin-3-yl)pyridine; 12-TMC= 1,4,7,10-
tetramethyl-1,4,7,10-tetraazacyclododecane; dca= dicyanamide; atz= 2-amino-1,3,5-triazine; L11*= 4′-(4-methoxyphenyl)-4,2′:6′,4′′-terpyridine; ppad= N3-(3-pyridoyl)-3-
pyridinecar-boxamidrazone; dps = 4,4’-dipyridyl sulfide; H3BTB= 1,3,5-tris(4-carboxylphenyl) benzene; bim= 1-benzylimidazole.



Table S2. Coordination networks with dps identified through a systematic search of the Cambridge Structural Database (CSD).

Compound Formula Compound type Methodology Metal Year CCDC Reference

1 (C20H24CdN4O6S)n

[Cd(CH3COO)2(NioxH2)(dps)]n

1D Coordination 
polymer

The solution was 
boiled, then cooled 

to room temperature.

Cd(II) 2012 ZASXEY 54

2 (C18H20CdN4O6S)n

[Cd(CHOO)2(NioxH2)(dps)]n

1D Coordination 
polymer

The solution was 
boiled, then cooled 

to room temperature

Cd(II) 2012 ZASXIC 54

3 (C20H24N4O6SZn)n

[Zn(CH3COO)2(NioxH2)(dps)]n

1D Coordination 
polymer

The solution was 
boiled, then cooled 

to room temperature

Zn(II) 2012 ZASXOI 54

4 (C20H20CuN4O2S2
+2)n·2n(NO3

-)· 
2n(H2O)

{[Cu(µ-dps)2(H2O)2](NO3)2· 
2H2O}n

3D Coordination 
polymer

Stirred / 
Hydro(solvo)thermal 

/ Filtered/Slow 
evaporation

Cu(II) 2012 NIMZIT01 55

5 (C20H20CoN4O2S2
+2)n·2n(C10H8

N2S)·2n(NO3
-)·4n(H2O)

{[Co(µ-dps)2(H2O)2](NO3)2· 
2(4,4’-dps)·4H2O}n

3D Coordination 
polymer

Stirred / 
Hydro(solvo)thermal 

/ Filtered / Slow 
evaporation

Co(II) 2012 QEDZIK 55

6 C20H24CdN4O4S2
+2·  

2(C6H6N5O-2)
1D Polymeric 
superstructure

Stirred / Slow 
evaporation

Cd(II) 2012 LEZBID 56



[Cd(H2O)4(dps)2](dmax)2

7 C20H24N4O4S2Zn+2·  2(C6H6N5O-

2)

[Zn(H2O)4(dps)2](dmax)2

1D Polymeric 
superstructure

Stirred / Slow 
evaporation

Zn(II) 2012 LEZBOJ 56

8 (C40H36N4Ni2O10S2)n

Ni2(H2O)2(C10H8O4)2(dps)2

3D Coordination 
polymer

Hydro(solvo)thermal Ni(II) 2012 FATBIN 57

9 C27H30CuN4O11S3

{[Cu(dps)2(Hssa)(H2O)2]· 
3H2O}n

1D Coordination 
polymer

Stirring / 
Hydrothermal

Cu(II) 2012 TEBBAF 58

10 C27H25MnN4O10S3

{[Mn(dps)2(Hssa)(H2O)2]· 
3H2O}n

1D Coordination 
polymer

Stirring / 
Hydrothermal

Mn(II) 2012 TEBBEJ 58

11 (C18H11BrCoN2O4S)n· 
0.5n(C10H8N2S3)

{[Co(5-Br-ip)(dps)](dpts)0.5}2n

3D Coordination 
polymer

Hydrothermal Co(II) 2013 PEYWAT 59

12 (C19H14N2O4SZn)n

[Zn(mip)(dps)]n

3D Coordination 
polymer

Hydrothermal Zn(II) 2013 NIGGOB 60

13 (C18H11BrCoN2O4S)n

[Co(dps)(Brip)]n

2D Coordination 
polymer

Hydrothermal Co(II) 2013 KEYDUP 61



14 (C36H24Br2N4Ni2O9S2)n

[Ni2(H2O)(5-Br-ip)2(dps)2]n

3D Coordination 
polymer

Hydrothermal Ni(II) 2013 KEYDEZ 62

15 (C52H38Cu5N8O30S2)n

[Cu5(nip)4(µ3-OH)2 
(dps)2(H2O)4]n

3D Coordination 
polymer

Hydrothermal Cu(II) 2013 DINCOU 63

16 C30H20N14S12Cd3

[H2(dps)]2[Cd3(SCN)10]

2D Coordination 
polymer

Slow diffusion Cd(II) 2013 REQWOB 64

17 C20H18N2O5SCo

[Co(Cpp)(dps)(H2O)]n

3D Coordination 
polymer

Stirring / 
Hydrothermal

Co (II) 2013 QIXJUE 65

18 (C24H16CoF6N4O4S2)n

[Co(tfa)2(dps)4]n

1D Coordination 
polymer

Stirred / Precipitate 
formed on cooling / 

Filtered

Co(II) 2014 XOGHOS 66

19 (C22H16CoN6S2Se2)n·2n(H2O)

{[Co(dps)2(SeCN)2]·H2O}n

1D Coordination 
polymer

Stirred / Slow 
diffusion

Co(II) 2014 WIZLEY 67

20 (C52H32Br4Co2N4O16S2)n

[Co2(dps)2(5-Br-Hip)4]n

2D Coordination 
polymer

Hydrothermal Co(II) 2014 QIJSIN 68

21 (C70H50Cd3N28O2S5W2)n·3(H2O)

[Cd(CH3CN)2(dps)][Cd(H2O) 
(dps)2]2[W(CN)8]2·3H2O

Sandwich-like 
coordination 

network

Slow diffusion Cd(II), 
W(IV)

2014 LOMSIR 69



22 (C66H48Cd3N26O4S5W2)n· 
2(C2H3N)·4(H2O)

[Cd(H2O)2(dps)][Cd(H2O)(dps)2
]2[W(CN)8]2·2CH3CN·4H2O

Sandwich-like 
coordination 

network

Slow diffusion Cd(II), 
W(IV)

2014 LOMVEQ 69

23 (C66H48Cd3N26O4S5W2)n·4(H2O)

[Cd(H2O)2(dps)][Cd(H2O)(dps)2
]2[W(CN)8]2·4H2O

Sandwich-like 
coordination 

network

Slow diffusion Cd(II), 
W(IV)

2014 LOMVIU 69

24 (C66H48Cd3N26O4S5W2)· 
2(C2H6O)

[Cd(H2O)2(dps)][Cd(H2O) 
(dps)2]2[W(CN)8]2·2CH3CH2OH

Sandwich-like 
coordination 

network

Slow diffusion Cd(II), 
W(IV)

2014 LOMVOA 69

25 (C52H56Cu4N4O16S2)n·1.5n(H2O)

[{Cu2[CH3(CH)2COO]4(dps)}2·1
.5H2O]

1D Coordination 
polymer

Slow diffusion / 
Stirred / Filtered / 

Recrystallized

Cu(II) 2014 KOFZIQ 70

26 C40H36N8O2S4Zn+2·
2(ClO4

-)·H2O

Zn(NCO)2(dps)

Metal-organic 
framework

Stirred / Filtered/ 
Slow evaporation

Zn(II) 2014 FIFZAW01 71

27 C42H32MnN10S6

Mn(NCS)2(dps)4

Metal-organic 
framework

Stirred / Slow 
evaporation

Mn(II) 2014 HOTMIN01 71

28 (C22H16FeN6S4)n·2(H2O) Metal-organic 
framework

Stirred / Filtered Fe(II) 2014 IREBEN01 71



[Fe(NCS)2(dps)2]·2H2O

29 (C12H8N4O2SZn)n

[Zn(dps)4(H2O)2](ClO4)2·H2O

Metal-organic 
framework

Refluxed / Filtered / 
Slow evaporation

Zn(II) 2014 LOHROR 71

30 (C48H32Cu8N16S4)n

[Cu4(CN)4(dps)2]n

3D Coordination 
polymer

Solvothermal Cu(I) 2014 EFUBAK 72

31 (C46H38Cu2I2N2P2S)n

1D-Cu2I2(tpp)2(dps)

1D Coordination 
polymer

Stirred Cu(I) 2015 SUQFOB 73

32 (C32H24N4O8S2Zn2)n

[Zn(muco)(dps)]

3D Metal-organic 
framework

Stirred / Filtered / 
Slow evaporation

Zn(II) 2015 JUFLED 74

33 (C38H28Co2N4O10S2)n

[Co2(dps)2(CH3O-ip)2]n

2D Coordination 
polymer

Hydro(solvo)thermal Co(II) 2015 HOMGUN 75

34 (C24H16N2NiO4S)n

[Ni(Bpdc](dps)]n

3D Coordination 
polymer

Hydrothermal Ni(II) 2015 BOSJAW 76

35 (C48H32Co2N4O8S2)n

[Co2(Bpdc)2(dps)2]n

3D Coordination 
polymer

Hydrothermal Co(II) 2015 FACQOS 76

36 (C29H20Co3N2O12S)n·4n(H2O)

[Co3(μ3-OH)(bppc)(dps) 
(CH3CH2OH)]·4H2O

Coordination 
polymer

Hydro(solvo)thermal Co(II) 2015 AHOBAC 77



37 (C56H58Cu2N4O11S2)n·H2O

[Cu2(O2CC8H9)4(dps)]n

Coordination 
polymer

Slow diffusion / 
Filtered

Cu(II) 2016 DUYWEB 78

38 (C46H44Cu2N2O8S)n

[Cu(O2CC8H9)2(dps)(H2O)]· 
H2O}n

Coordination 
polymer

Slow diffusion / 
Filtered

Cu(II) 2016 DUYYON 78

39 (C20H16F6N4S2SiZn)n

([Zn(dps)2(SiF6)]·4H2O)

Metal-organic 
framework

Slow evaporation Zn(II) 2017 SAXPIT 79

40 C22H24CuN2O6S

{[Cu(ppa)(dps)(H2O)](H2O)2}n

3D Metal-organic 
framework

Slow diffusion Cu(II) 2018 MEFSEY 80

41 C22H22CuN2O5S

{[Cu(ppa)(dps)](H2O)}n

3D Metal-organic 
framework

Slow diffusion / 
Heat

Cu(II) 2018 MEGGEN 80

42 C74H46Cd2.25Co0.75N4O12S2

[Cd2.25Co0.75(BTB)2(dps)2]·xSol

2D Metal-organic 
framework

Single crystal to 
single crystal 
conversion

Cd(II), 
Co(II)

2018 KINSAE 81

43 C24H28N4O10S4Cl2Cu

[Cu(dps)2(dmso)2]n(ClO4)2n

2D Coordination 
polymer

Slow diffusion Cu(II) 2019 FODDIO02 82

44 C48H60N8O22S8Cl4Cu2

[{Cu(dps)2(dmso)2}{Cu(dps)2 
(dmso)(H2O)}]n(ClO4)4n· 

2nH2O·n(dmso)

2D Coordination 
polymer

Slow diffusion Cu(II) 2019 YONTON 82



45 C40H38N8O11S4Cl2Co

[Co(dps)4(H2O)2](ClO4)2]·H2O

Coordination 
complex

Stirred / Slow 
evaporation

Co(II) 2019 YONTUT 82

46 (C20H16Br2CoN4S2)n

[Co(dps)2Br2]n

2D Coordination 
polymer

Stirred / Filtered / 
Slow evaporation

Co(II) 2019 POGNAD 30

47 (C20H20CoN4O2S2
+2)n·4(H2O)· 

2(I-)

[Co(dps)2(H2O)2·I2·(H2O)4]n

2D Coordination 
polymer

Stirred / Filtered / 
Slow evaporation

Co(II) 2019 POGNEH 30

48 (C24H28CuN4O2S4
+2)n·2(ClO4

-)

{[Cu(dps)2(DMSO)2](ClO4)2}n

2D Coordination 
polymer

Refluxed / Filtered / 
Recrystallized

Cu(II) 2019 FODDIO 83

49 (C74H46Cd3N4O12S2)n

[Cd3(BTB)2(dps)2]·xSol

2D Metal-organic 
framework

Single crystal to 
single crystal 
conversion

Cd(II) 2019 FIWGEA 84

50 (C20H16CuF6N4S2Si)n·4(H2O)· 
C2H2

[Cu(dps)2(SiF6)]·6H2O

Metal-organic 
framework

Slow diffusion Cu(II) 2020 MUBQAE 85

51 (C20H16CuF6N4S2Si)n·4(H2O)· 
C2H2

[Cu(dps)2(SiF6)]·6H2O

Metal-organic 
framework

Slow diffusion Cu(II) 2020 MUBQAE01 85

52 (C20H16CuF6N4S2Si)n·6(H2O)

[Cu(dps)2(SiF6)]

Metal-organic 
framework

Slow diffusion Cu(II) 2020 RUJDIM 85



53 (C34H20Co2N2O13SV)n

[(Co)2(V)(OH)(NH2BDC)3]dps

Metal-organic 
framework

Solvothermal Co(II), 
V(III)

2020 YUWXUM 86

54 (C16H10N2O4S2Zn)n

[Zn(TDA)(dps)]

2D Metal-organic 
framework

Hydrothermal Zn(II) 2020 RUCWAQ 87

55 C36H34N6Ni2O12S2 Metal-organic 
complex

Hydrothermal Ni(II) 2020 ROXRAA 88

56 (C20H16CuF5N4NbOS2)n

[Cu(dps)2(NbOF5)]

3D Metal-organic 
framework

Slow diffusion Nb(V), 
Cu(II)

2020 QALNUQ 89

57 (C46H46Co3N2O16S)n

[Co3(iBuOIPA)3(dps)(H2O)]n

3D Coordination 
polymer

Hydrothermal Co(II) 2020 NUWFIX 90

58 (C32H28Co2N2O10S)n

[Co2(iPrIPA)2(dps)]n

2D Coordination 
polymer

Hydrothermal Co(II) 2020 NUWFOD 90

59 (C20H16CuF6GeN4S2)n

[Cu(dps)2(GeF6)]

Metal-organic 
framework

Slow diffusion / 
Filtered

Cu(II), 
Ge(IV)

2020 NUQGEO 91

60 (C20H16F6GeN4S2Zn)n

[Zn(dps)2(GeF6)]

Metal-organic 
framework

Slow diffusion / 
Filtered

Ge(IV), 
Zn(II)

2020 NUQGUE 91

61 (C50H46Cu2N6O18S2)n·12(H2O)

{[Cu(Cbdcp)(dps)(H2O)3]· 
6H2O}n

1D Metal-organic 
framework

Stirred / Crystallized 
/ Filtered

Cu(II) 2020 IQIVAI 92



62 (C96H72Cu4N12O18S2)n

[Cu4(Dcbb)4(dps)2(H2O)2]n

1D Metal-organic 
framework

Stirred / Crystallized 
/ Filtered

Cu(II) 2020 IQIVEM 92

63 (C20H16CuF6GeN4S2)n·6(H2O)

[Cu(dps)2(GeF6)]n

Metal-organic 
framework

Slow diffusion / 
Filtered

Cu(II), 
Ge(IV)

2022 FAWXOU 93

64 (C20H16CuF5N4NbOS2)n·8(H2O)

[Cu(dps)2(NbOF5)]n

Metal-organic 
framework

Slow diffusion / 
Filtered

Cu(II), 
Nb(V)

2022 FAWXUA 93

65 C20H16Cl2CoN4S2

[Co(dps)2Cl2]n

2D Metal-organic 
framework

Stirred / Heated / 
Slowly evaporated

Co(II) 2023 PUQGAJ02 94

66 C34H24Mg2N2O10S

[Mg2(1,4-NDC)2(H2O)2]· 
[(dps)2]

3D Metal-organic 
framework

Stirred / Heated / 
Slowly evaporated

Mg(II) 2023 UDUSAR 95

NioxH2= 1,2-cyclohexanedionedioxime; dmax= 4,6-dimethyl-1,2,3-triazolo[4,5-d]pyrimidin-5,7-dionato; Hssa= 5-sulfosalicylic acid; dpts= 
dipyridyltrisulfide; mip= 5-methylisophthalic acid; Brip= 4-bromoisophthalate; 5-Br-ip= 5-bromoisophthalate; nip= 5-nitroisophthalic acid; 
Cpp= 3(4carboxyphenyl)propionic acid; tfa-= CF3CO2

−; 5-Br-Hip= 5-bromoisophthalate; tpp= triphenylphosphine; muco= trans-muconate 
dianion; CH3O-H2ip= 5-methoxyisophthalate; Bpdc= 3,3'-biphenyl dicarboxylic; bppc= biphenyl-2,4,6,3’,5’-pentacarboxylic; ppa= 1,4-
phenylenedipropionic acid; BTB= benzene-1,3,5-tribenzoic acid; NH2BDC= 2-amino-benzene-1,4-dicarboxylate; TDA= 2,5-thiophene 
dicarboxylic acid; iBuOIPA= 5-i-butoxyisophthalate; iPrIPA= 5-i-propoxyisophthalate; Cbdcp= N-(4-carboxybenzil)-(3,5-dicarboxyl)- 
pyridinium; Dcbb= 1-(3,5-dicarboxybenzyl)-4,4’-bipyridinium; 1,4-NDC= 1,4-naphthalenedicarboxylic acid.



Table S3. A set of abbreviations used to designate 4,4’-dipyridyl sulfide (dps) through a 

systematic search of the Cambridge Structural Database (CSD).

Abbreviations Nomenclature Number of reports References

Bds 4,4'-bipyridyl sulfide 1 65

bps 4,4'-bipyridylsulfide 1 67

bps 4,4'-bipyridyl sulfide 2 90

bps 4,4'-bipyridyl sulphide 2 56

dbs 4,4'-dipyridylsulfide 2 74, 89

dps 4,4’-dipyridylsulfide 23

54, 58-60, 62, 
63, 68, 72, 75, 
79, 85, 86, 88, 

93 

dps 4,4’-dipyridyl sulfide 11 66, 69, 1, 83, 
84, 92

dps di(4-pyridyl)sulfide 6 78, 81, 82

dps dipyridin-4-ylsulfane 1 94

dps 4,4′-dipyridinesulfide 1 87

dps 4,4'-sulfanediyldipyridine 1 77

Dps 4,4'-dipyridyl sulfide 2 76

DPS di(4-pyridyl)sulphide 4 71

S-(Py)2 di(4 pyridinyl) sulfide 1 95

tdp 4,4’-thiodipyridine 2 80

tdpy 4,4’-thiodipyridine 1 64

4,4'-thiodipyridine 1 57

4-dps 4,4'-dipyridyl sulfide 1 70

4,4'-dps 4,4′-Dipyridylsulfide 1 73

4,4'-dps di(4-pyridyl)sulfide 2 55



Table S4. Coordination networks with dpds identified through a systematic search of the Cambridge Structural Database (CSD).

Compound Formula Compound type Methodology Metal Year CCDC Reference

1
C30H28N6O8S6Cu

[Cu(dpds)2(H2O)2](3pySO3)2

1D Coordination 
polymer Slow diffusion Cu(II) 2012 RAFVIF 96

2
C30H32S6O10N6Zn

[Zn(dpds)2(H2O)2](3pySO3)2· 
2H2O

1D Coordination 
polymer Stirring Zn(II) 2012 RAFVOL 96

3
C28H34S4O14N4Zn 

[Cu(dpds)2(H2O)2](Hfum)2· 
4H2O

1D Coordination 
polymer Reflux/ filtration Cu(II) 2012 RAFVUR 96

4
C28H36S4O15N4Zn

[Zn(dpds)2(H2O)2](Hfum)2· 
5H2O

1D Coordination 
polymer

Hydro(solvo)
thermal Zn(II) 2012 RAFWAY 96

5
C41H36MnN4O8S4 

[{Mn(O2CPh)2(dpds)2}·(H2O)· 
0.5(HO2CPh)]n

1D Coordination 
polymer Slow diffusion Mn (II) 2012 GEBZAQ 97

6
Mn2C54H40N14S14O

[Mn(NCS)2(dpds)2]2·DPDS·H2O
1D Coordination 

polymer

Reaction 
mixture/crystallizati

on
Mn(II) 2012 CEWFOB 98



7
FeC22H22N6O3S6

[Fe(NCS)2(dpds)2]·3H2O
1D Coordination 

polymer Slow diffusion Fe(II) 2012 CEWFUH 98

8
CoC22H20N6O2S6

[Co(NCS)2(dpds)2]·2H2O
1D Coordination 

polymer Slow diffusion Co(II) 2012 CEWGAO 98

9
C26H24N4O10S4Zn2

Zn2(dpds)2(C3H2O4)2(H2O)2

2D Coordination 
polymer

Stirring under heat/ 
crystallization Zn(II) 2012 KESBAN 99

10
C10H8Cl2N2S2Zn

(C10H8Cl2N2S2Zn)n

1D Coordination 
polymer Slow diffusion Zn(II) 2012 YEJDAU 100

11
C10H8Br2N2S2Zn

[ZnBr2(µ-dpds)]n

1D Coordination 
polymer Slow evaporation Zn(II) 2013 REPTEN 101

12
C44H38N12O7S8Co2

[Co2(NCO)4(dpds)4]·3H2O
3D Coordination 

polymer Slow evaporation Co(II) 2013 GIDWEX 102

13
C15H19N2O9S2Zn

{[Zn(C10H2O8)0.5(dpds)]· 
5H2O]}n

2D Metal-organic 
framework Slow diffusion Zn(II) 2013 PITRIV 103

14
C12H20N2S2O10Cu

[Cu(C2O4)(dpds)]·6H2O
2D Coordination 

polymer Hydrothermal Cu(II) 2013 DIMPUM 104

15 C22H22N4S4O7Cu 1D Coordination 
polymer

Stirring/ reflux/ 
filtration Cu(II) 2013 DIMYUV 104



[Cu(C2O4)(dpds)2]·3H2O

16
(C36H26Co2N6O14S4)n

[Co(H2O)(dpds)(nip)]n

3D Coordination 
polymer Hydrothermal Co(II) 2013 KEYDOJ 61

17
C26H28Cu2N2O8S2

[Cu2[CH3(CH)2COO]4(dpds)]
1D Coordination 

polymer Slow diffusion Cu(II) 2014 KOFZEM 70

18
(C30H22Co2N4O12S4)

[Co(dpds)(pyromellitate)0.5 
(H2O)2]n

2D Metal-organic 
framework Slow diffusion Co(II) 2014 LOCZAG 105

19
(C30H24CuN4O10S4)

[Cu(dpds)2(pyromellitate)]n· 
2n(H2O)

2D Metal-organic 
framework Slow diffusion Cu(II) 2014 LOCZEK 105

20
(C34H60N4Ni2O25S4)

[Ni2(dpds)2(pyromellitate) 
(H2O)2]n·2n(C2H5OH)·11n(H2O)

3D Metal-organic 
framework Slow diffusion Ni(II) 2014 LOCZIO 105

21
C16H17N2O5S2Cu

Cu(H2O)(dpds)(2-MGA)
2D Coordination 

polymer Slow evaporation Cu(II) 2014 AJULIC 106

22
C16H18.5N2O5.25S2Zn

Cu(H2O)(dpds)(2-MGA)
3D Coordination 

polymer Hydrothermal Zn(II) 2014 AJULEY 106



23
C16H16.5N2O5.25S2Cd

[Cd(H2O)(dpds)(2-MGA)]· 
0.25H2O

3D Coordination 
polymer Slow evaporation Cd(II) 2014 AJULAU 106

24
C26H19N8S6FeCl

{[Fe(NCS)2(dpds)2]·
2(2,5-DCP)}n

3D Coordination 
polymer

Stirring/ slow 
evaporation Fe(II) 2015 GOTZEW 107

25
C26H24N4O6S4Zn

[Zn(muco)(dpds)2(H2O)2]

2D 
Supramolecular 

network

Stirring/ slow 
evaporation Zn(II) 2015 JUFZAN 74

26
C44H40N4O14S4Zn2

{[Zn(2,6-ndc)(dpds)]·3(H2O)}n

2D Metal-organic 
framework Slow diffusion Zn(II) 2015 WUGZUV 108

27
C22H22CoN2O8S2

{[Co(2,6-ndc)(dpds) 
(H2O)2]·2(H2O)}n

2D Metal-organic 
framework Slow diffusion Co(II) 2015 WUHBAE 108

28
C56H52Cd2N6O14S6

{[Cd2(2,6-ndc)2(dpds)2(H2O)2]· 
(dpds)·(EtOH)·3(H2O)}n

3D Metal-organic 
framework Slow diffusion Cd(II) 2015 WUJRUQ 108

29
C37.24H36.96N4O17.24S4Zn2

{[Zn(bdc)(dpds)]·0.62(MeOH)·2
(H2O)}n

2D Metal-organic 
framework Direct mixing Zn(II) 2015 GOVYOH 109



30
C15H19N2O14S2Zn

{[Zn(C10H2O8)0.5(dpds)]· 
5H2O]}n

2D Metal-organic 
framework Slow diffusion Zn(II) 2015 PITRIV01 110

31
C34H46Cu2N6O20S4

[Cu2(PDA)2(dpds)2(H2O)2]. 
8H2O

Dimeric structure 
linked through H-
bonding to form 

1D chain.

Slow diffusion Cu(II) 2016 AKIPER 111

32 C36H26Cu2N4O4S2 
[Cu(L)]2(dpds)]n

3D Coordination 
polymer

Stirring/recrystallizat
ion Cu(II) 2017 XESWUQ 112

33
C10H8Cl2HgN2S2

[Hg(dpds)Cl2]n

1D Coordination 
polymer Slow diffusion Hg(II) 2017 NATGIB 113

34
C10H8Br2HgN2S2

[Hg(dpds)Br2]n

1D Coordination 
polymer Slow diffusion Hg(II) 2017 NATGOH 113

35
C10H8I2HgN2S2

[Hg(dpds)I2]n

1D Coordination 
polymer Slow diffusion Hg(II) 2017 NATKEB 113

36
C25H28Cu2N4O14S2

{[Cu2(2,5-pdc)2(dpds)(H2O)2]· 
3H2O·MeOH}n

3D Metal-organic 
framework Slow diffusion Cu(II) 2018 IMOTAG02 114

37
C74H46Cd3N4O12S4 

[Cd2.25Co0.75(BTB)2(dpds)2]· 
xSol

2D Metal-organic 
framework

Single-crystal to 
single-crystal 
conversion

Cd(II), 
Co(II) 2018 KINSEI 81



38
C48H74Cu2N7O13.5S2

[Cu2(caproxy)4(dpds)]n

1D Coordination 
polymer

Single-crystal to 
single-crystal 
conversion

Cu(II) 2018 ONODED 115

39
C38H24FeN12S6

[Fe(dpds)2{C(CN)3}2]·dpds
1D Coordination 

polymer
Stirring/crystallizatio

n Fe(II) 2019 XOHKOX 116

40
C22H22B2FeN6S4

[Fe(dpds)2(NCBH3)2]
1D Coordination 

polymer Slow diffusion Fe(II) 2019 XOHLAK 116

41
C22H23FeN6S4O3.5Se2

[Fe(dpds)2(NCSe)2]·3.5H2O
1D Coordination 

polymer Slow diffusion Fe(II) 2019 XOHLIS 116

42
C28H24CoN4O6S4

[Co(dpds)(bdc)(H2O)2].dpds
2D Metal-organic 

compound Slow diffusion Co(II) 2020 NUJFAC 117

43
C28H24CuN4O6S4

[Cu(dpds)(bdc)(H2O)2]
2D Coordination 

polymer Slow evaporation Cu(II) 2020 ELUWEQ 118

44
C48H41Mn2N16NbO4.5S8

[Mn(dpds)2]2[Nb(CN)8]⋅6H2O
3D Coordination 

framework Slow diffusion Mn(II) 2021 PARLON 119

45
C18H15N3O5S2Zn

[Zn(5-AIP)(dpds)]·H2O
2D Coordination 

polymer Slow diffusion Zn(II) 2021 ITESUY 120

46
C40H32Mo2N8Ni2O8S8

[Ni(dpds)]2MoO4

2D Pillared 
rhomboid grids Stirring/ filtration Ni(II), 

Mo(VI) 2022 YAPBAW 121



47
C40H32N8Ni2O8S8W2

[Ni(dpds)]2WO4

2D Pillared 
rhomboid grids Stirring/ filtration Ni(II), 

W(VI) 2022 YAPBEA 121

48
C40H32Cr2N8Ni2O8S8

[Ni(dpds)]2CrO4

2D Pillared 
rhomboid grids Stirring/ filtration Ni(II), 

Cr(VI) 2022 YAPCEB 121

49
C20H16CuN4S4·2(BF4)

(Cu(BF4)2(dpds)2)
1D Metal-organic 

framework
Stirring/crystallizatio

n Cu(II) 2024 QOGTUF 122

50
C30H30Cu2N4O17S4

[Cu2(dpds)2(C5O5)2(H2O)4]· 
3H2O

1D Coordination 
polymer

Reaction mixture/

crystallization
Cu(II) 2024 COZRAO 123

51
C15H14CuN2O8S2

[Cu(dpds)(C5O5)]·3H2O
2D Metal-organic 

framework

Reaction 
mixture/crystallizati

on
Cu(II) 2024 COZRES 123

52
C32H40Cu2N4O20S4

[Cu2(dpds)2(C5O5)2]·9H2O· 
C2H5OH

3D Metal-organic 
framework

Reaction 
mixture/crystallizati

on
Cu(II) 2024 COZRIW 123

3pySO3H= pyridine-3-sulfonic acid; H2fum= fumaric acid; H2nip= 5-nitroisophthalic acid; H2MGA= (RS)-2-methyl glutaric acid; 
2,5-DCP= 2,5-dichloropyrazine; muco= trans-muconate; 2,6-ndc= 2,6-naphthalene dicarboxylic acid; bdc= benzenedicarboxylic acid; PDA= 
2,4-pyridine; H2L= salicylidene-2-aminopheno; 2,5-pdc= 2,5-pyridine-dicarboxylate; BTB= benzene-1,3,5-tribenzolate; Hcaproxy= 3-
carboxy-2,2,5,5-tetramethyl1-pyrrolidinyloxy; 5-AIP =5-amino isophthalate.



Table S5. A set of abbreviations used to designate 4,4’-dipyridyl disulfide (dpds) through 

a systematic search of the Cambridge Structural Database (CSD).

Abbreviations Nomenclature Number of reports References

Ald aldrithiol 1 111

ald-4 aldrithiol-4 1 114

Ald-4 aldrithiol-4 1 120

aldrithiol 2 103, 110

aldrithiol 4,4′-dipyridyldisulfide 3 105

aldrithiol 4,4′-dipyridyl disulphide 3 108

bpds 4,4′-bipyridyldisulphid 1 117

bpds 4,4′-dipyridyldisulfide 1 99

bpds bis(4-pyridyl)disulfide 3 113

dbds 4,4'-dipyridyldisulfide 1 74

dpds 4,4’-bipyridinedisulfide 1 122

dpds 4,4’-dipyridyldisulfide 13
61, 96, 109, 
116, 119, 

123

Dpds 4,4′-dipyridyldisulfide 3 106

DPDS 4,4′-bipyridinedisulfide 3 121

DPDS 4,4'-dipyridyl disulfide 1 81

DPDS di(4-pyridyl)disulfide 4 98, 102

dtdp 4,4’-dithiodipyridine 2 100, 101

pds 4,4'-dipyridyl disulfide 1 115

SS 4,4′-dipyridyldisulfide 2 104

4,4′-dtp 4,4′-dithiopdipyridine 1 97

4,4'-dtdp 4,4′-dithiodipyridine 1 112

4-dpds 4,4’-dipyridyldusulfide 1 118

4-dpds 4,4’-dipyridyl disulfide 1 70

4-DPS 4,4’-dipyridyl disulfide 1 107



Table S6. Selected bond distances for compounds 1-2.

Atom labels 1 (M= Co) 2 (M=Cu)
M1—O1 2.218(4) 2.034(3)
M1—O2 2.049(3) 1.989(3)
M1—N3 2.100(5) 1.997(3)
M1—O5i 2.048(3) 1.977(3)
M1—O6i 2.194(5) 2.499(3)
M1—N4ii 2.123(5) 2.263(3)
C1—C2 1.536(8) 1.541(6)
C9—C10 1.553(8) 1.550(5)
S1—C15 1.776(7) 1.771(4)
S1—C16 1.776(7) 1.781(5)
N1—C1 1.339(7) 1.318(6)
N1—C3 1.412(8) 1.422(5)
N2—C7 1.418(7) 1.416(6)
N2—C9 1.333(8) 1.333(5)

C15—S1—C16 101.1(3) 101.2(2)
C1—N1—C3 127.6(5) 127.0(4)
C7—N2—C9 126.2(5) 125.8(4)

Table S7. Geometric analysis of the coordination environment of the CoII (1) and CuII (2) 

ions, showing the site symmetry approximation derived from continuous shape measures 

(CShM; via SHAPE124).

Label Symmetry Shape CShM*
(1) (2)

HP-6 D6h Hexagon 15.103 15.625
PPY-6 C5v Pentagonal pyramid 25.462 25.499

JBTPR-8 C2v Octahedron 16.441 17.359
TPR-6 D3h Trigonal prism 21.941 23.105
JPPY-6 C5v Johnson pentagonal pyramid J2 25.329 25.733

*The approach is incorporated into the program SHAPE, which is readily available for 

public use.124 The values of SHAPE measures relative to other reference polyhedra of 1 

are significantly larger. The lower limit corresponds to structures that exactly match the 

shape of symmetry, and increasing values result in increasingly distorted structures.125



1. Ab Initio Energy Levels
The SA-CASSCF(7,5)/SC-NEVPT2 calculations yielded 50 spin-free states. The 
energies of the lowest 7 states, corresponding to the parent 4F and 4P terms, are provided 
in Table S8. The subsequent spin-orbit coupling (SOC) calculation generated 120 spin-
orbit states.
Table S8. Energies of the lowest spin-free states from NEVPT2 calculation.

State (S = 3/2) Symmetry Energy (cm-1)
1 ⁴F 0.0
2 ⁴F 343.6
3 ⁴F 1614.1
4 ⁴F 8549.9
5 ⁴P 8750.9
6 ⁴F 8894.6
7 ⁴P 17984.9

Table S9. Energies of the lowest 12 spin-orbit states (Kramers Doublets 1-6).

State Energy (cm-1)
1, 2 0.0
3, 4 228.1
5, 6 651.5
7, 8 926.5
9, 10 1975.2
11, 12 2032.8

2. Ground State Spin Hamiltonian Parameters (Multiplet 1)
The ground S=3/2 pseudospin multiplet (composed of states 1-4) was analyzed. The 
principal values and orientation vectors for the g-tensor and D-tensor relative to the 
molecular Cartesian frame are provided in Tables S10 and S11, respectively.
Table S10. Selected bond distances for compounds 1-2.

Axis g-value vx vy vz

gx (Xm) 1.8857 -0.15137 -0.98840 -0.01269
gy (Ym) 2.1449 0.98848 -0.15134 -0.00348
gz (Zm) 3.1130 0.00152 -0.01307 0.99991

Table S11. Selected bond distances for compounds 1-2.

Axis D-value (cm-1) vx vy vz

Dx (Xa) -70.657 0.00842 -0.01074 0.99991
Dy (Ya) 10.992 0.99936 -0.03470 -0.00879
Dz (Za) 59.665 -0.03479 -0.99934 -0.01044



The D and E parameters derived from these tensor components are D = -106.0 cm-1 and 

E = -24.3 cm-1.

3. Ground State ZFS Matrix and QTM Analysis
The large rhombicity (|E/D| ≈ 0.23) induces significant mixing of the MS states. This is 
quantified in the ab initio ZFS matrix (Table S12), which shows large off-diagonal 
elements (e.g., 41.0 + 9.8i cm⁻¹) coupling the ground and excited doublets.

Table S12. Selected bond distances for compounds 1-2.

|-3/2⟩ |-1/2⟩ |+1/2⟩ |+3/2⟩
⟨-3/2| -105.98 0.69 - 0.89i 41.00 + 9.79i 0.00 - 0.00i
⟨-1/2| 0.69 + 0.89i 105.98 0.00 - 0.00i 41.00 + 9.79i
⟨+1/2| 41.00 - 9.79i 0.00 + 0.00i 105.98 -0.69 + 0.89i
⟨+3/2| 0.00 + 0.00i 41.00 - 9.79i -0.69 - 0.89i -105.98

4. Anisotropy of Excited Multiplets
The spin Hamiltonian parameters for all 10 calculated multiplets (9 of S = 3/2, 1 of S = 
1/2) are summarized in Table S13.

Table S13. Energies, g-tensor values, and ZFS parameters for all calculated multiplets.

Mult. Energy Range (cm⁻¹) gₓ gᵧ gz D (cm⁻¹) E (cm⁻¹)
1 0 – 228 1.886 2.145 3.113 -106.0 -24.3
2 651 – 926 2.101 1.957 1.094 134.6 -16.2
3 1975 – 2032 1.710 1.825 1.962 27.9 -4.3
4 8861 – 8905 2.124 2.037 1.830 -21.1 -3.7
5 9058 – 9099 1.605 1.864 2.164 19.4 -4.0
6 9250 – 9387 1.441 1.508 1.997 -66.5 -8.9
7 10711 – 12899 0.985 0.985 0.993 1051.2 -175.0
8 18272 – 18312 1.630 1.691 1.801 19.7 -1.9
9 18543 – 18779 0.718 0.896 1.293 111.2 -22.8
10 19080 1.006 1.291 1.780 N/A N/A



5. Crystal Field Parameters
The ab initio crystal field was fitted to the spin-free 4F term (L=3). The resulting Extended 
Stevens Operator (Ok

q) parameters (Bk
q) are given in Table S14.

Table S14. Ab initio crystal field parameters Bk
q (in cm⁻¹) for the L=3 (4F) ground term, 

using the Extended Stevens Operator definition.

k q Bₖq (cm⁻¹) k q Bₖq (cm⁻¹)
2 -2 47.500 4 0 -10.668
2 -1 0.310 4 1 45.313
2 0 24.891 4 2 9.100
2 1 -28.088 4 3 40.849
2 2 -39.733 4 4 -12.456
4 -4 72.742 6 -6 0.339
4 -3 86.807 6 -5 0.538
4 -2 -15.727 6 -4 0.159
4 -1 56.165 6 -3 0.307

6 -2 0.394
6 -1 -0.282
6 0 0.024
6 1 -0.380
6 2 -0.020
6 3 0.859
6 4 0.091
6 5 1.970
6 6 0.236

Table S15. Generalized Debye parameters from the ac data measured in absence of a 

magnetic field for 1.

T / K H / Oe τ / s χS / cm3mol-1 χT / cm3mol-1 α
2.59892 0.343 8.33x10-5 0.88099 0.89744 0.09209
2.79978 0.343 8.10x10-5 0.8187 0.83491 0.13221
3.00027 0.343 7.02x10-5 0.76579 0.77838 2.61x10-8

3.19881 0.343 7.05x10-5 0.7187 0.73051 2.26x10-5

3.39925 0.343 6.89x10-5 0.67666 0.68883 0.06975
3.60116 0.343 6.52x10-5 0.63943 0.65064 0.05305
3.79996 0.343 5.12x10-5 0.60275 0.61929 0.37666
3.99919 0.343 6.81x10-5 0.57612 0.58687 0.10576
4.4995 0.343 5.45x10-5 0.51272 0.52104 3.10x10-20

5.50019 0.343 6.19x10-5 0.4203 0.42901 0.25124
5.99961 0.343 5.26x10-5 0.38668 0.39234 1.09x10-10

6.50013 0.343 4.59x10-5 0.35712 0.36183 1.34x10-16



Table S16. Generalized Debye parameters from the ac data measured with an applied 

field of 1kOe for 1.

T / K H / Oe τ / s χS / cm3mol-1 χT / cm3mol-1 α
2.00304 1000.137 3.76x10-4 0.13676 0.99959 0.1341
2.20328 1000.137 3.34x10-4 0.12744 0.94288 0.1189
2.40255 1000.137 2.94x10-4 0.12035 0.88628 0.10141
2.60222 1000.137 2.61x10-4 0.11284 0.8381 0.09235
2.80221 1000.137 2.30x10-4 0.10633 0.79027 0.08267
3.00224 1000.137 2.01x10-4 0.10136 0.74512 0.07209
3.20213 1000.137 1.78x10-4 0.09513 0.70759 0.07076
3.40193 1000.137 1.56x10-4 0.09062 0.67016 0.06446
3.60153 1000.137 1.37x10-4 0.08573 0.63778 0.06305
3.80155 1000.137 1.21x10-4 0.0821 0.60649 0.05862
4.00085 1000.137 1.06x10-4 0.07751 0.57893 0.05882
4.50096 1000.137 7.65x10-5 0.07131 0.51449 0.04573
5.00068 1000.137 5.63x10-5 0.06524 0.46631 0.04207
5.50075 1000.137 4.14x10-5 0.06083 0.42426 0.0366
6.00011 1000.137 3.08x10-5 0.05693 0.38896 0.03133
6.49973 1000.137 2.32x10-5 0.05459 0.35946 0.0269
6.99932 1000.137 1.76x10-5 0.05113 0.3339 0.02442
7.49891 1000.137 1.32x10-5 0.04541 0.31197 0.02931
7.99941 1000.137 1.01x10-5 0.04158 0.29268 0.03328
8.49913 1000.137 7.58x10-6 0.0334 0.27496 0.03425
8.999 1000.137 5.61x10-6 0.02565 0.26031 0.05053

9.49887 1000.137 3.82x10-6 2.03x10-12 0.24667 0.06824



Table S17. Generalized Debye parameters from the ac data measured with an applied 

field of 1kOe for 2.

T / K H / Oe τ / s χS / cm3mol-1 χT / cm3mol-1 α
1.99999 1000.266 1.63x10-4 0.04429 0.08521 0.09875
2.20018 1000.266 2.04x10-4 0.05018 0.09326 0.08176
2.40022 1000.266 2.68x10-4 0.05637 0.10794 0.13947
2.6001 1000.266 3.08x10-4 0.06098 0.11572 0.15829
2.80028 1000.266 3.00x10-4 0.06367 0.11389 0.10773
3.00019 1000.266 3.29x10-4 0.06356 0.11623 0.16315
3.20011 1000.266 3.00x10-4 0.06152 0.11221 0.15091
3.39999 1000.266 2.83x10-4 0.06012 0.10805 0.15715
3.59981 1000.266 2.68x10-4 0.05832 0.10462 0.14349
3.80002 1000.266 2.32x10-4 0.05561 0.10035 0.14133
4.00007 1000.266 2.08x10-4 0.05325 0.09563 0.12881
4.49984 1000.266 1.74x10-4 0.04759 0.08753 0.13278
5.00009 1000.266 1.35x10-4 0.04261 0.07799 0.11149
5.5001 1000.266 1.10x10-4 0.03782 0.07152 0.14518
5.9998 1000.266 8.52x10-5 0.03481 0.06404 0.11137
6.4999 1000.266 7.20x10-5 0.03107 0.06021 0.1516
7.00011 1000.266 5.77x10-5 0.02902 0.05464 0.1236
7.49996 1000.266 4.64x10-5 0.02611 0.05094 0.15513
7.99988 1000.266 4.17x10-5 0.02502 0.0473 0.11817
8.49983 1000.266 2.57x10-5 0.01849 0.04596 0.31435
9.00002 1000.266 2.60x10-5 0.02049 0.0414 0.19429
9.49998 1000.266 2.46x10-5 0.02049 0.03854 0.13666
10.00009 1000.266 1.43x10-5 0.01523 0.03723 0.304
10.50047 1000.266 1.33x10-5 0.01499 0.03461 0.2571
11.50001 1000.266 1.27x10-5 0.01557 0.0308 0.2066



Figure S1. FTIR spectra of 1 (black trace) and 2 (red trace).

(a)



Figure S2. Thermogravimetric curves for 1 (a) and 2 (b).

Figure S3. Experimental (red) and calculated (black) PXRD patterns for 1. 

(b)



Figure S4. Experimental (red) and calculated (black) PXRD patterns for 2.

Figure S5. Calculated structure of the Co(II) in (1) showing the orientation of the 

principal axes of the g-tensor (gx, gy, gz) for the ground S = 3/2 multiplet. Color code: Co, 

pink; C, grey; N, blue; O, red; S, yellow; H, white.



 

(a)

(b)



Figure S6. (a) Frequency dependence of the ac susceptibility for 1, measured in the 

absence of a magnetic field. (b) Cole-Cole plot obtained from the frequency-dependence 

of the ac susceptibility for 1 measured in the absence of a magnetic field. Lines represent 

the best-fit curves obtained using a generalized Debye model with one relaxation process 

according to the description in the text.

Figure S7. Arrhenius-like plot lnτ vs. T−1. Temperature dependence of the relaxation time 

for the compound 1. (– fitted by model Raman, black). (measured in the absence of a 

magnetic field).
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