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Table S1. Summary of cobalt(Il) and copper(Il) compounds exhibiting SIM or SMM behavior, compiled from an extensive literature survey.

External Magnetic

1
Formula Nature Geometry field (kOe) U./Kz (K) 19 (S) D(cm) behavior Effect Ref.
Distorted -7
[Co4(phen),Cl;] Complex octahedral -- 8.41 5.29x10 -- SMM QTM 1
Distorted 5
[Coy(phen),Clg] Complex octahedral 1.0 14.04 2.87x10 -- SMM QT™ 1
dmphCoBr Complex tg;:;‘;ﬁfgn 1.0 22.8(8) 3.7(5)x10710 10.62 SMM Orbach 2
: Distorted 10 Direct
[Co(biq)Cl,] Complex tetrahedron 2.0 42.6(5) 1.9(3)x10 10.5 SMM Orbach 3
. Distorted 10 Direct
[Co(biq)Cl,] Complex etahodron 3.0 41.2(13) 3.0(12)x10 10.5 SMM Otbach 3
. Distorted 10 Direct
[Co(biq)Br;,] Complex tetrahedron 2.0 39.6(91) 1.2x10 12.5 SMM Orbach 3
. Distorted .y Direct
[Co(biq)Br;] Complex tetrahedron 3.0 42.3(6) 5.009)x10 12.5 SMM Orbach 3
: Distorted 13 Direct
[Co(big)I;] Complex tetrahedron 2.0 57.0(7) 3.2(6)x10 10.3 SMM Orbach 3
. Distorted . Direct
[Co(biq)L,] Complex tetrahedron 3.0 38.7(37) 9.9(9)x10 10.3 SMM Orbach 3
Distorted i QTM
C16H52B20N284C0 COI’IlplCX tetrahedral -- 385(6) 3.3x10 -71.6 SMM Raman 4
i Orbach
[Co(dmphen)Br,] Complex tgrlzfg;fgn 2.0 64.5(41) 6.8(75)x10714 13.8 SMM Direct 5
QTM
i Orbach
[Co(dmphen)Br,] Complex tg;:;‘;ﬁfgn 4.0 35.0(50) 3.0(41)x10°10 13.8 SMM Direct 5
QTM
. Orbach
[Co(dmphen)L,] Complex tgrlzfgfgn 2.0 69.6(30) 2.1(18) x10°1¢ 16.6 SMM Direct 5

QTM




Orbach

Co(dmphen)I Distorted
[Co(dmphen)l,] Complex tetrahedron 4.0 41.5(41) 0.64(70)x1071° 16.6 SMM Direct 5
. QTM
Co(NS:BYNC Trigonal .
[Co(NS;P*)NCS]CIO, Complex bipyramidal - 20 2 0x10°° 11 SMM Direct 6
- Raman
[Co(N3)L*H;]Cl C 1 Trigonal
3 3]Cly omplex bipyramidal 0.5 21.58(2) 5.0x107° -7.1 SMM Orbach 7
[Co4(mbm),Bry- Complex Distorted
[C(CH31?H)4] octahedral - 26.7 1.3x107 - SMM QTM 8
04(m Bry- i
(é(H (;HH); ]r4 Complex Distorted 0.75 26.7 1.3x10°°
o K ) ] octahedral : : 3x10 - SMM QTM 8
04(mbm - i
(CHCH o%)rﬁ Complex Distorted - 21 9.7x10°9
[C z bz)B4 octahedral RS -- SMM QT™M 8
04(mbm - '
C ﬁ i O4H Ty Complex Distorted 0.75 2% B
x\22 ) )a] octahedral ) 5.6x10 -- SMM QT™M 8
[Cos(Himn)6]Cl,-2CH; Complex Trigonal
OH P antiprism - 58.99 6.76x10°® -112.0 SMM Raman 9
[COMTIDPAS) o Distorted : Dsbach
. DMF octahedral 0 34.1 2.1x1077 -75.1(8) SMM Ra_man 10
[Co(bppCOOH,] Complex Distorted Direct
(Cl04),"2Me,CO octahedral - 15.9 2.7x10°¢ 51.6 SMM Raman 11
[Co(H,daps)(MeOH Compl Pentagonal
2daps)(MeOH), ] omplex bipyramidal 1.0 33.5 7.4x10°6 43.1(7) SMM QTM 12
[Co(H,daps)(NCS)(Me Complex Pentagonal I
OH)](C10,)-(MeOH) P bipyramidal 10 284 5.6x10°¢ 41.5(6) smm - 9™ 12
[Co(H4daps)(NCS),]- Complex Pentagonal oI
(McOH), biyranidal 1.0 23.6 4.8x10° 38.8(2) SMM ISTM 12
3D . aman
[Co(abpt)x(N3),] Supramolecula Distorted N ) Direct
? pnetwork r octahedral 29 7.7x1077 -24.1 SMM Raman 13
Orbach
[Co(half-Pc),] Complex Pseudotetra- B B
p 77.7(7) 3.17x10710 -27.9 SMM Orbach 14

hedral




[Co(pyterpy)(NO3),] 1D Complex Octahedral 1.0 4.24 3.02x1073 70.4 SMM Orbach 15
[CoLgiprop(CH;CN)] Trigonal _ % i Orbach
Cl00, Complex orismatic 13(1) 4.3(12)x10 25.8 SMM Divact 16
(g’n(;%%z]ﬂg%‘i) Complex Octahedral 1.0 17.8Q2) 3.2(1) x107 79.2 SMM 113;‘:;; 17
(hcr‘if;%z?fg%‘% Complex Octahedral 2.0 14.4(1) 6.5(1)x10°7 79.2 SMM g;fg;; 17
2 3 2
3% . :
[CO(ZLCI){]B(S%{O“)Z Complex ;‘Sgn‘l):ti - 38.6(7) 1.7(1)x10°6 -116.6(6) SMM %‘?&n 18
3% . 1
[COELC}%]gBlf 4 Complex pTr?si(l):ti - 39.2(4) 1.85(5)x10° -127.6(8) SMM Ig‘;’ﬁ“ 18
3
Distorted Direct
3+ - -5
[Co(L¥*)(SCN),] Complex octahodral 10.30(7) 1.2(2)x10 34.7(1) SMM OTM 18
[CoB3C,sbzimpy),] Complex Octahedral 1.0 7.0(66) 2.5x10° 49.65 SMM Orbach 19
(BF4)
4)2
. QTM
[{(PyP Zﬁflio]} (dhbg)] Complex Tr?si?:ti - 97(3) 7.8(1)x10°8 785 SMM Orbach 20
612 p Raman
. QTM
[{(PyPz3)Co}x(dhbq)] Complex Trigonal 1.0 124(6) 2.0(4)x1071! 78.5 SMM Orbach 20
[PFs], prismatic
Raman
[Co(CH5CO0O0), Pseudo- 4
(CoHN),(H,0),] Complex octahedral 1.5 25.0 6.7x10 -- SMM Orbach 21
Distorted
[Co(bzpy)4(NCS),] Complex tetragonal 2.0 22.9 1.16x10° 90.5 SMM Orbach 22
bipyramidal
Distorted
[Co(bzpy)4(NCS),] Complex tetragonal 4.0 27.7 0.31x10° 90.5 SMM Orbach 22
bipyramidal
Distorted Bottleneck
[Co(4-HOpa),(H,0),] Complex octahodual 1.0 46 - 71.35 SMM Raran 23
a-[Co(3,5-Hdnb),(py), Distorted J— Direct A
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(H,0),] octahedral Raman
B'[C°(3(’f1'l({)‘)m]b)2(p”2 Complex Octahedral 1.0 30.3(9) 3.4x10°8 68 SIM g;fg;; 24
2Y7)2
Distorted QT™M
[Co(pydm),](dnbz), Complex tetragonal -- 44.1(8) 2.8(4)x107° 44 SIM Raman 25
bipyramid
{[Co(bmzbc),]- 3D Metal-organic s
JDMF}, framework Octahedral -- 11.8 1.3x10 53.2 SIM QT™ 26
[Co(bpeb),(NCS),]- 2D Metal-organic Distorted 5 Orbach
7DCB framework octahedral 0.25 43.06 0.23x10 64.9(9) SIM Raman 27
[Co(bpeb),(NCS),]- 2D Metal-organic Distorted > Orbach
7DCB framework octahedral 0.5 42.05 0.27x10 64.909) SIM Raman 27
[Co(bpeb),(NCS),]- 2D Metal-organic Distorted i Orbach
7DCB framework octahedral 1.0 45.07 0.17x10 64.9(9) SIM Raman 27
[Co(bpeb),(NCS),]. 2D Metal-organic Distorted > Orbach
4TAN.4MeOH framework octahedral 1.0 24.62 2.27x10 67.109) SIM Raman 27
[Co(bpeb),NCS),]. 2D Metal-organic Distorted i Orbach
6TOL framework octahedral 1.0 16.56 8.22x10 84.4(4) SIM Raman 27
[Co(bpeb),(NCS),]. 2D Metal-organic Distorted > Orbach
8PYR framework octahedral 1.0 3024 1.30x10 70309) SIM Raman 27
L Distorted
[Co(tdmmb)(bpe)] 1D Coordination o0 oy 1.0 19 7.5x10°6 21.7(7) SIM QTM 28
[BF4],-2CH;CN polymer . .
bipyramidal
Distorted y Direct
Et;N[Co"(hfac);] Complex octahedral 0.0 18(2) 9(5)x10°° 117.8 SIM Raman 29
Orbach
I Distorted i Direct
Ety,N[Co"(hfac);] Complex octahedral 1.0 20.6(5) 6.4(9)x10 117.8 SIM Raman 29
Orbach
[Co(bmim),(SCN),] Complex Distorted 0.5 22.03 2.15x10° 7.5 SIM Orbach 30
3 ? P tetrahedral ' ' ' '
Distorted
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tetrahedral

[Co(bmim),(SCN),] Complex Distorted 2.5 5.20 3.61x10°° 7.5 SIM Orbach 30
P tetrahedral
[Co(bmim),(NCO),] Complex tgizt}‘l’gfr‘;l 1.0 15.55 6.80x10°° 6.3 SIM Orbach 30
[Co(bmim),(NCO),] Complex Distorted 2.5 13.97 1.70x10° 6.3 SIM Orbach 30
P tetrahedral
[Co(bmim)(N3),] Complex Distorted 1.0 9.61 2.5x10°8 6.7 SIM Orbach 30
tetrahedral
[Co(bmim),(N3),] Complex Distorted 2.5 10.81 3.20x10°8 6.7 SIM Orbach 30
tetrahedral
[Co(L#),Cl,] Complex tgit}‘l’gfr‘;l 12 26.2 3.69x10710 -18.1 SIM Orbach 31
. QTM
[Co(L*"),Br,] Complex tlzisfr;erdl 275 22.9 2x10°8 -16.4 SIM Raman 31
clrahedra Orbach
. QTM
[Co(L4),1] Complex tgizt}‘l’gfr‘;l 1.7 27.8 1.22x10°8 222.0 SIM Raman 31
Orbach
Distorted Orbach
[Co™(L3"),](Cl10,), Complex triangular 0.5 44 7.4x107° -29.4 SIM Raman 32
dodecahedron
Distorted Orbach
[Co™(L"),](Cl10,), Complex triangular 0.5 20 3.9x107° -40.5 SIM Raman 32
dodecahedron
Distorted Orbach
[Co™(L7"),](C10,), Complex triangular 0.5 18 2.3x1077 -22.0 SIM 32
Raman
dodecahedron
Distorted Orbach
[Co'(L8*),](ClOy), Complex triangular 0.5 31 3.9x107° -15.8 SIM Raman 32
dodecahedron ama
L. Distorted
{[COZA(?T,E}“‘?),Z(CPC ID Coordination trigonal 5.0 9.2 9.1x10°3 38.2(4) SIM QM 33




prismatic

Distorted s Orbach
[Co(Co-terpy),](BF4), Complex octahedral 1.0 13.8(9) 1.1(4)x10 47.5 SIM Raman 34
[Co(dmphen), Distorted
(OOCPh)ICIO, Complex octahedral 0.5 9.80(14) 1.62(10)x10°¢ 61.9 SIM Orbach 35
0.5H,0-1/2CH;0H
[Co(dmphen), Distorted
(OOCPH)]CIO4 Complex octahedral 1.0 8.89(16) 4.2(3)x10°¢ 61.9 SIM Orbach 35
1/2H,0-1/2CH;0H
[Co(dmphen), Distorted
4 omplex . . S(8)x10™ . rbac
(OOCPh)]CIO Compl hadval 2.5 6.92(15) 11.5(8)x10°6 61.9 SIM Orbach 35
1/2H,0-1/2CH;0H octahe
[Co(dmbipy), Distorted I
(00CPh)ICIO, Complex octahedral 0.5 8.52(11) 1.44(7)x10 61.6 SIM Orbach 35
[Co(dmbipy), Distorted 6
(OOCPh)ICIO, Complex octahedral 1.0 9.47(7) 1.42(4)x10 61.6 SIM Orbach 35
[Co(dmbipy), Distorted I
(00CPh)ICIO, Complex octahedral 2.5 10.08(13) 1.45(7)x10 61.6 SIM Orbach 35
Capped
1T _
[Co (?gﬁ)TP Al Complex trigonal 1.0 39.7 1.53x107 214 SIM g;ﬁ;ﬁ 36
42 prismatic
Distorted
[CoL?*(NCS),]- DMSO Complex prismatic 1.0 35.6(9) 2.5(2)x1073 -1538.0 SIM Orbach 37
trigonal
mﬁ‘(’)gii : y21)] Complex Tetrahedral - 85 2.1(1)x107 -42.6(4) SIM (lzztr)r?;r}: 38
2
) Distorted g Direct
Co(H,DPA)-2H,0 Complex octahedral 1.5 43.28 2.11x10 67.63(22) SIM Raman 39
L Distorted
[Co(btcay p(mbpy)], 2 Coordination = nal 1.0 29.1 3.4x1077 372 SIM QTM 40
polymer . . Raman
bipyramidal
{[Co(H,tbca)(bpb) 2D Metal-organic Distorted Direct
(H,0),]-bpb}, framework octahedral ) 318 B 62.1 SIM Raman 41




Distorted

Orbach

[L1%°,Co](TBA), Complex trahodual — 325 1.46x10-10 “113.0 SIM Rammer 42
[Co(CzPh,PO),CL] Complex tgfat}i’;erjl 1.0 28.9 2.51x10° -16.4 SIM Orbach 43
Distorted -9
[Co(CzPh,PO),Br;] Complex tetrahedral 1.0 22.7 5.19x10 -13.8 SIM Orbach 43
Distorted 5
[Co(CzPh,PO),1,] Complex tetrahedral 0.8 60.9 2.05x10 14.6 SIM Orbach 43
Trigonal 6
[Co(bepp)Cl,] Complex bipyrami d 2.0 11.2 8.6x10 64.68 SIM Raman 44
[Co(bcpp)Br;] Complex b{;;grznmih 2.0 5.59 7.22x1073 45.00 SIM Raman 44
[Co(12-TMC)(NCS),]- Distorted %
0.5CH:0H Complex octahedral 6.0 23.23 3.0x10 32.10(0) SIM Orbach 45
[(&O((lczNT)l\)’[? Complex (Egt}:’;igl 2.0 2731 1.14x10°8 25.95(9) SIM g;ﬁ‘;ﬁ 45
2)2
Distorted
[Co(12-TMC)YNCO)] Complex square 2.0 23.16 1.17x10°° - SIM Orbach 45
[B(CsHs)4 . Raman
pyramidal
[Co(dca)(atz)], 2P ig?yrﬂigf“o“ fi?;gfﬁ 1.0 5.1 1.7x10°6 - SIM Orbach 46
[Co(L'),(SCN),- 2D Coordination Distorted 6 QTM
2(CH;CN)-2(dmf)], polymer octahedral 1.0 36.9 1.4x10 41.6 SIM Raman 47
2D Coordination Distorted 6
[Co(ppad),]. Dolymer octehodral 2.0 11.37 5.03x10 76 SIM Orbach 48
cis-[Co(dmphen): Distorted 4
(NCS):]-0.25EtOH Complex octahedral 1.0 23.33 4.37x10 98 SIM Orbach 49
cis-[Co(dmphen): Distorted _7
(NCS):]-0.25EtOH Complex octahedral 2.5 26.06 3.03x10 98 SIM Orbach 49
cis-[Co(dmphen): Distorted ,7
(NCS):]-0.25EtOH Complex octahedral 5.0 23.90 4.02x10 98 SIM Orbach 49
Distorted Orbach
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octahedral Raman
[Co(dps),Br,], 2D Complexes gztﬁ’;‘;gl 1.5 28.9 7.40x10°7 28.0(9) SIM Sgé\ft 50
[Co(dg_sl);éiz]?)z'lz' 2D Complexes ii;ﬁ’:;:l 15 25.3 5.54x10°7 9.5(5) SIM Sifgft 50
HCO(H&\?OTS ])32)}?§phen)] 1D i‘(’)‘f;f:lgfﬁ‘m iiztﬁ’ifrgl 2.0 12.103) 5.52(4)x10”7 747(3) SIM Sgé\ft 51
(gz%%ﬁﬁtﬁi)é Coggfyigf;‘m ii;ﬁ’:;:l 2.0 110(10) 1.3(0.1)x10-10 79.0 SIM Orbach 52
[Co(dca)y(bim),] Complex iiztﬁ’;ergl 2.5 7.74 0.87 x 10 69.6 SIM gfg:zﬁ 53
[Co(dca)y(bim),], Cog’gfyigf;‘m (giztﬁ’;igl 25 533 1.54 x 10°6 743 SIM Orbach 53
[Co(dca),(bmim),], Cogfyir‘fetion (gztﬁ’;ergl 25 13.81 0.63 x 10 75.8 SIM Orbach 53
(gt D Comion el O
(bl Corinin— Drei ) s powe awg) sw Pk T
T DG Dred : S e ™

phen= 1,10-phenanthroline; dmph= 2,9-dimethyl-1,10-phenanthroline; biq= 2,2'-biquinoline; dmphen= 2,9-dimethyl-1,10-phenantroline; NS;B'= 2-(tert-butylthio)-N-(2-(tert-
butylthio)ethyl)-N-((neopentylthio)methyl)ethan-1-amine; L= 6,16,2,5-tribenzena(1,4) 1,4,8,11,14,18,23,27-octaazabicyclo[9.9.9]nonaco-saphane; LC¢'4= 4-tetradec-1-ynyl-2,6-di-
pyrazol-1-yl-pyridine; mbm= 1-Me-(1H-benzo[d]imidazol-2-yl)methanolate; Himn—= 2-(2-imidazolinyl)phenolate); L**= 4' (4 Bromophe-nyl)2,2":6',2" terpyridine; DPAS=
4(phenylamino) benzenesulfonate; bppCOOH= 2,6-Di(1H-pyrazol-1-yl)isonicotinic acid; Hydaps= 2,6-bis(1-salicyloylhy-drazonoethyl)pyridine; abpt= 4-amino-3,5-bis(pyridin-2-
yl)-1,2,4-triazole); half-Pe= (Z)-1-((1,1-dimethoxy-1H-isoindol-3-yl)imino)-3-iminoisoindolin-2-ide; pyterpy= 4'-(4"'-pyridyl)-2,2":6"2"-terpyridine; Lagiprop= (1,5,13,17,22
pentaazatricyclo-[15.2.2.17,11]docosa-7,9,11(22)-triene); tppz = 2,3,5,6 tetrakis(2-pyridyl)pyrazine; Hympba= 1,3-phenylenebis(oxamic) acid); L3*= tris(pyridylhydrazonyl)phos-
phorylsulfide; 3C;4-bzimpy= 2,2’-(4-hexade cyloxy-2,6-diyl)bis(1-hexadecyl-1H-benzo[d]imidazole); dhbq= 2,5-dioxo-1,4-benzoquinone; bzpy= 4 benzylpyridine; 4-HOpa= N-
4-hydroxyphenyloxamate; 3,5-Hdnb= 3,5-dinitrobenzoic acid; py= pyridine; pydm= 2,6pyridinedimethanol; dnbz= 3,5dinitrobenzoato; bmzbec= 4-(benzimidazole-1-yl)benzoate;
bpeb= 1,4-bis(4'-Pyridylethynyl)benzene(bpeb); DCB= ortho-dichlorobenzene; TAN= thianthrene; TOL= toluene; PYR= pyrrole; tdmmb= 1,3,10,12-tetramethyl-1,2,11,12-tetra-
aza[3](2,6)pyridino[3](2,9)-1,10-phenanthrolinophan-2,10-diene; bpe= 1,2-di(4-pyridyl)ethane; hfac= hexafluoro-acetylacetonate; bmim= 1-benzyl-2-methylimidazole; L4'=
Tetramethylthiourea; L5~ Dimethyl-1,10-phenanthroline-2,9-carboxylate; L6*= Dibutyl-1,10-phenanthroline-2,9-carboxylate; L7*= Dimethyl[2,2'-bipyridine]-6,6'-dicarboxylate; L¥*=
Dibutyl[2,2'-bipyridine]-6,6'-dicarboxylate; H,CPCA= 3-(3-carboxyphenyl)-1H-pyra zole-5-carboxylic acid; C,o-terpy= 4'-alkoxy-2,2’:6’,2"-terpyridine; HOOCPh= benzoic acid;




dmbipy= 6,6'-dimethyl-2,2'-bipyridine; BPA-TPA= [2,6-bis[bis(2pyridylmethyl)amino]-methyl]pyridine; L%*= 2,2'-((Butane-2,3-diylidene)-bis(hydrazin-1-yl-2-ylidene))bis (4,6-
dimethylpyrimidine); iminopyrrolyl= 5-(2,4,6-triisopropylphenyl)-2-(N-2,6-diisopropylphenylformimino)pyrrole; H,DPA= 2 6-pyridine-dicarboxylic acid; mbpy= 4,4’-Dimethyl-
2,2’-bipyridyl; btca= 1,2,4,5-Benzenetetracarboxylic acid; Hytbea= 1,2,4,5-Benzenetetracarboxylic acid; bpb= 1,4-bis(pyrid-4-yl)benzene; TBA= tetrabutylammonium; L%*=
N!,N2-bis(4-chlorophenyl)oxalamide; CzPh,PO= (9H-carbazol-9-yl)diphenylphosphineoxide; bepp= bis(1-chloroimidazo[1,5-a]pyridin-3-yl)pyridine; 12-TMC= 1,4,7,10-
tetramethyl-1,4,7,10-tetraazacyclododecane; dca= dicyanamide; atz= 2-amino-1,3,5-triazine; L= 4'-(4-methoxyphenyl)-4,2":6',4"-terpyridine; ppad= N3-(3-pyridoyl)-3-
pyridinecar-boxamidrazone; dps = 4,4’-dipyridyl sulfide; H;BTB= 1,3,5-tris(4-carboxylphenyl) benzene; bim= 1-benzylimidazole.




Table S2. Coordination networks with dps identified through a systematic search of the Cambridge Structural Database (CSD).

Compound Formula Compound type Methodology Metal Year CCDC Reference
1 (CpoH24CdN4O6S), 1D Coordination The solution was Cddrn 2012 ZASXEY 54
. polymer boiled, then cooled
[C(CH;COO0),(NioxH,)(dps)]a to room temperature.
2 (C1gH0CdN4O6S), 1D Coordination The solution was Cddr 2012 ZASXIC 54
) polymer boiled, then cooled
[CA(CHOO)(NioxH,)(dps)]» to room temperature
3 (Cy0H24N406SZn), 1D Coordination The solution was Zn(II) 2012 ZASXOI 54
) polymer boiled, then cooled
[Zn(CH;COO)(NioxH,)(dps)]n to room temperature
4 (CooH20CuN40,S,")n-2n(NO57)- 3D Coordination Stirred / Cu(ll) 2012 NIMZITO1 55
2n(H,0) polymer Hydro(solvo)thermal
/ Filtered/Slow
{ [CU(H‘dP;)ﬁI(;I)z}S)z](NOﬁz‘ evaporation
5 (C0H;30CoN40,S,72),-2n(CjoHg 3D Coordination Stirred / Co(Il) 2012 QEDZIK 55
N»2S)-2n(NO5")-4n(H,0) polymer Hydro(solvo)thermal
/ Filtered / Slow
{[Co(u-dps)2(H,0)2]J(NOs),- evaporation
2(4,4’-dps)-4H,0} ,
6 C20H24CdN4O4SQ+2' 1D Polymeric Stirred / Slow Cd(H) 2012 LEZBID 56
2(C¢HgN5O2) superstructure evaporation



10

11

12

13

[Cd(H0)4(dps).](dmax),

C20H24N404822n+2 : 2(C6H6N5O'

%)
[Zn(H,0)4(dps)](dmax),
(C4oH36N4N1,010S2)n
Niy(H20)2(C10HgO4)2(dps)2
Cy7H30CuN40O,;S;3

{[Cu(dps),(Hssa)(H,0),]
3HZO } n

Cy7H,sMnN4O4S3

{[Mn(dps),(Hssa)(H,0),]-
3H20 } n

(C 1 gH] 1BI'CON204S)H'
O.SH(C10H8N283)

{[Co(5-Br-ip)(dps)](dpts)os}an
(C1oH,4N,0,87n),
[Zn(mip)(dps)]a
(CygH1BrCoN,04S),
[Co(dps)(Brip)]x

1D Polymeric
superstructure

3D Coordination
polymer
1D Coordination

polymer

1D Coordination
polymer

3D Coordination
polymer

3D Coordination
polymer

2D Coordination
polymer

Stirred / Slow
evaporation

Hydro(solvo)thermal

Stirring /
Hydrothermal

Stirring /
Hydrothermal

Hydrothermal

Hydrothermal

Hydrothermal

Zn(1I)

Ni(I)

Cu(Il)

Mn(II)

Co(ID)

Zn(1I)

Co(II)

2012

2012

2012

2012

2013

2013

2013

LEZBOJ

FATBIN

TEBBAF

TEBBEJ

PEYWAT

NIGGOB

KEYDUP

56

57

58

58

59

60

61



14

15

16

17

18

19

20

21

(C36H24B1raN4N1,09S5),
[Niy(H,0)(5-Br-ip)2(dps):]n
(Cs2H33CusNgO30S2)n

[Cus(nip)a(p3-OH),
(dps)>(H,0)4]x

C30H0N14S1,Cds
[Ha(dps)]2[Cd3(SCN);0]
C,0H1sN,05SCo
[Co(Cpp)(dps)(H,0)],
(Co4H;6CoFeN4O4S5),
[Co(tfa),(dps)s]n

(CxH 6CoNgS,Se,),-2n(H,0)
{[Co(dps)2(SeCN),] H 01},
(Cs2H3,BrsCooN40O1652),
[Coy(dps),(5-Br-Hip)4],
(C70Hs50Cd3N250,S5 W), 3(H,0)

[Cd(CH;CN),(dps)][Cd(H20)
(dps)2]o.[W(CN)g]»'3H,0

3D Coordination
polymer

3D Coordination
polymer

2D Coordination
polymer

3D Coordination
polymer

1D Coordination
polymer

1D Coordination
polymer

2D Coordination
polymer

Sandwich-like
coordination
network

Hydrothermal

Hydrothermal

Slow diffusion

Stirring /
Hydrothermal

Stirred / Precipitate
formed on cooling /

Filtered

Stirred / Slow
diffusion

Hydrothermal

Slow diffusion

Ni(II)

Cu(II)

Cd(I)

Co (II)

Co(II)

Co(ID)

Co(II)

Cd(),
W(V)

2013

2013

2013

2013

2014

2014

2014

2014

KEYDEZ

DINCOU

REQWOB

QIXJUE

XOGHOS

WIZLEY

QIJSIN

LOMSIR

62

63

64

65

66

67

68

69



22

23

24

25

26

27

28

(Co6HasCd3N2604SsW3),°
2(C,H;N)-4(H,0)

[Cd(H,0)(dps)][Cd(H,0)(dps).
J.lW(CN)s],-2CH;CN-4H,0

(Co6HasCd3N2604SsW5),-4(H,0)

[Cd(H20)2(dps)][Cd(H,O)(dps).
LIW(CN)s],-4H,0

(Ce6HagCd3N204SsW>)-
2(C,H(0)

[Cd(H,0),(dps)][Cd(H,0)
(dps)2]o[W(CN)s],-2CH3CH,OH

(Cs2Hs6CusN4O16S7)0° 1.5n(H,0)

[{Cuy[CH3(CH),COO]4(dps)}»-1
5H,0]

C40H36NgOZS4ZI’I+2 .
2(CIO4') ‘H,O

Zn(NCO),(dps)
C4H3,MnN;(Sq
Mn(NCS)»(dps)4

(CoH 6FeNgS4), 2(H,0)

Sandwich-like
coordination
network

Sandwich-like
coordination
network

Sandwich-like
coordination
network

1D Coordination
polymer

Metal-organic
framework

Metal-organic
framework

Metal-organic
framework

Slow diffusion

Slow diffusion

Slow diffusion

Slow diffusion /
Stirred / Filtered /
Recrystallized

Stirred / Filtered/
Slow evaporation
Stirred / Slow

evaporation

Stirred / Filtered

Cd(n),
W(V)

Cd(,

W(V)

Cd(n),

Wav)

Cu(Il)

Zn(1I)

Mn(II)

Fe(1l)

2014

2014

2014

2014

2014

2014

2014

LOMVEQ

LOMVIU

LOMVOA

KOFZIQ

FIFZAWO01

HOTMINOI

IREBENO1

69

69

69

70

71

71

71



29

30

31

32

33

34

35

36

[Fe(NCS)2(dps).]-2H,0
(C1oHgN,0,587n),
[Zn(dps)(H,0),](C104)2-Hy0
(CasH32CusN16S4)n
[Cus(CN)4(dps):]n
(C46H33Cu1bN,P,S),
1D-Cu,Lx(tpp)2(dps)
(C3aHpN405S,715),
[Zn(muco)(dps)]
(C3sH25C02N4010S2)n
[Cox(dps)>(CH;30-ip),]a
(Cy4H 6NoNiO4S),
[Ni(Bpdc](dps)]n
(CasH32C02N405S:)n
[Cox(Bpdce)a(dps):]n
(Ca9H20C03N,01,5),-4n(H,0)

[Cos(u3-OH)(bppc)(dps)
(CH;CH,OH)]-4H,0

Metal-organic
framework

3D Coordination
polymer

1D Coordination
polymer

3D Metal-organic
framework

2D Coordination
polymer

3D Coordination
polymer

3D Coordination
polymer

Coordination
polymer

Refluxed / Filtered /
Slow evaporation

Solvothermal

Stirred

Stirred / Filtered /
Slow evaporation

Hydro(solvo)thermal

Hydrothermal

Hydrothermal

Hydro(solvo)thermal

Zn(1I)

Cu(l)

Cu(I)

Zn(1I)

Co(ID)

Ni(IT)

Co(II)

Co(1I)

2014

2014

2015

2015

2015

2015

2015

2015

LOHROR

EFUBAK

SUQFOB

JUFLED

HOMGUN

BOSJAW

FACQOS

AHOBAC

71

72

73

74

75

76

77



37

38

39

40

41

42

43

44

(Cs6HsgCusN4O11S,),-H,O
[Cux(0,CCsHo)a(dps)]n
(C46H44CusN,O58S),

[Cu(O,CCsHy),(dps)(H,0)]-
HZO}n

(CaoH 1 6FN4S,SiZn),
([Zn(dps)a(SiFs)]-4H,0)
CoHa4CuN, 068
{[Cu(ppa)(dps)(H,0)](H20)}
C,H2,CuN,058
{[Cu(ppa)(dps)](H20)}x
C74H46Cd225C007sN4012S;
[Cd25C00.75(BTB),(dps),] xSol

C24H28N401084C12C11
[Cu(dps)2(dms0),],(Cl04)2,
CusHgoN302,S3C14Cu,

[{Cu(dps)>(dmso),} {Cu(dps)>
(dmso)(H20)} 14(ClO4)4n"
2nH,0-n(dmso)

Coordination
polymer

Coordination
polymer
Metal-organic

framework

3D Metal-organic
framework

3D Metal-organic
framework

2D Metal-organic
framework

2D Coordination
polymer

2D Coordination
polymer

Slow diffusion /
Filtered

Slow diffusion /
Filtered

Slow evaporation

Slow diffusion

Slow diffusion /
Heat

Single crystal to
single crystal
conversion

Slow diffusion

Slow diffusion

Cu(I)

Cu(II)

Zn(1I)

Cu(Il)

Cu(I)

Cd(1n),
Co(II)

Cu(Il)

Cu(I)

2016

2016

2017

2018

2018

2018

2019

2019

DUYWEB

DUYYON

SAXPIT

MEFSEY

MEGGEN

KINSAE

FODDIOO02

YONTON

78

78

79

80

80



45

46

47

48

49

50

51

52

C40H38Ng0;,S4C1,Co
[Co(dps)4(H20),](C104).]-H,O
(CyoH¢Br,CoNyS,),
[Co(dps),Br2]s
(CaoHagCON04852), 4(H,0)-
2(I
[Co(dps)2(H20)2 Lo (H2O)uln
(C24H23CuN40,8472),-2(Cl0y)
{[Cu(dps)>(DMS0),](ClO4)2}n
(C74H46Cd3N4012S,),
[Cd3(BTB),(dps),]-xSol
(CaoH16CUFN,S,Si)y - 4(H,0):
C,H,
[Cu(dps)x(SiFs)]-6H,0

(CyoH6CuFN4S,S1),-4(H,0)-
CH,

[Cu(dps)a(SiFs)]-6H,O
(C20H16CuF¢N4S,S1),-6(H,0)
[Cu(dps)a(SiFe)]

Coordination
complex

2D Coordination
polymer

2D Coordination
polymer
2D Coordination

polymer

2D Metal-organic
framework

Metal-organic
framework

Metal-organic
framework

Metal-organic
framework

Stirred / Slow
evaporation

Stirred / Filtered /
Slow evaporation

Stirred / Filtered /
Slow evaporation

Refluxed / Filtered /

Recrystallized
Single crystal to

single crystal
conversion

Slow diffusion

Slow diffusion

Slow diffusion

Co(II)

Co(II)

Co(ID)

Cu(Il)

Cd(n

Cu(Il)

Cu(ID)

Cu(Il)

2019

2019

2019

2019

2019

2020

2020

2020

YONTUT

POGNAD

POGNEH

FODDIO

FIWGEA

MUBQAE

MUBQAEO1

RUJDIM

82

30

30

83

84

85

85



53

54

55

56

57

58

59

60

61

(C34H20C0oN20138V),
[(Co)2(V)(OH)(NH,BDC);]dps
(C16H9N204S,Zn),
[Zn(TDA)(dps)]
C36H34NgN1,015S,

(CoH;6CuFsN4yNDOS,),
[Cu(dps),(NbOFs)]
(CaeH16C03N2016S),
[Co3(iBuOIPA);(dps)(H,0)],
(C32H25C02N2010S),
[Co,(iPrIPA),(dps)]a
(CooH6CuFsGeNyS,),
[Cu(dps)>(GeF)]

(C2oH 6FsGeN4S,Zn),
[Zn(dps)>(GeFe)]
(CsoHa6CUNGO15S2)y 12(H,0)

{{Cu(Cbdcp)(dps)(H0)3]*
6H20}n

Metal-organic
framework

2D Metal-organic
framework

Metal-organic
complex
3D Metal-organic

framework

3D Coordination
polymer

2D Coordination
polymer

Metal-organic
framework

Metal-organic
framework

1D Metal-organic
framework

Solvothermal Co(ID),
V(III)

Hydrothermal Zn(1II)
Hydrothermal Ni(ID)
Slow diffusion Nb(V),
Cu(Il)

Hydrothermal Co(II)
Hydrothermal Co(II)
Slow diffusion / Cu(ID),
Filtered Ge(IV)
Slow diffusion / Ge(IV),
Filtered Zn(1D)

Stirred / Crystallized — Cu(II)
/ Filtered

2020

2020

2020

2020

2020

2020

2020

2020

2020

YUWXUM

RUCWAQ

ROXRAA

QALNUQ

NUWFIX

NUWFOD

NUQGEO

NUQGUE

IQIVAI

86

87

88

89

90

90

91

91

92



62

63

64

65

66

(CosH72CuaN12,015S,)n
[Cus(Dcebb)s(dps)2(H20):]n
(CyoH6CuF¢GeNyS,), 6(H,0)
[Cu(dps)(GeFg)]n

(CaoH1cCuFsN;NbOS,),-8(H,0)
[Cu(dps)2(NbOFs)],
CyoH6CL,CoNyS,
[Co(dps)CL]n
C34H24MgoN>O S

[Mg>(1,4-NDC),(H,0),]
[(dps):]

1D Metal-organic
framework

Metal-organic
framework

Metal-organic
framework

2D Metal-organic
framework

3D Metal-organic
framework

Stirred / Crystallized
/ Filtered

Slow diffusion /
Filtered

Slow diffusion /
Filtered

Stirred / Heated /
Slowly evaporated

Stirred / Heated /
Slowly evaporated

Cu(I)

Cu(Il),
Ge(IV)

Cu(II),
Nb(V)

Co(ID)

Mg(II)

2020

2022

2022

2023

2023

IQIVEM

FAWXOU

FAWXUA

PUQGAJ02

UDUSAR

92

93

93

NioxH,= 1,2-cyclohexanedionedioxime; dmax= 4,6-dimethyl-1,2,3-triazolo[4,5-d]pyrimidin-5,7-dionato; Hssa= 5-sulfosalicylic acid; dpts=
dipyridyltrisulfide; mip= 5-methylisophthalic acid; Brip= 4-bromoisophthalate; 5-Br-ip= 5-bromoisophthalate; nip= 5-nitroisophthalic acid,
Cpp= 3(4carboxyphenyl)propionic acid; tfa= CF;CO,~; 5-Br-Hip= 5-bromoisophthalate; tpp= triphenylphosphine; muco= trans-muconate
dianion; CH3;0-H,ip= 5-methoxyisophthalate; Bpdc= 3,3'-biphenyl dicarboxylic; bppe= biphenyl-2,4,6,3”,5’-pentacarboxylic; ppa= 1,4-
phenylenedipropionic acid; BTB= benzene-1,3,5-tribenzoic acid; NH,BDC= 2-amino-benzene-1,4-dicarboxylate; TDA= 2,5-thiophene
dicarboxylic acid; iBuOIPA= 5-i-butoxyisophthalate; iPrIPA= 5-i-propoxyisophthalate; Cbdcp= N-(4-carboxybenzil)-(3,5-dicarboxyl)-

pyridinium; Debb= 1-(3,5-dicarboxybenzyl)-4,4’-bipyridinium; 1,4-NDC= 1,4-naphthalenedicarboxylic acid.



Table S3. A set of abbreviations used to designate 4,4’-dipyridyl sulfide (dps) through a

systematic search of the Cambridge Structural Database (CSD).

Abbreviations Nomenclature Number of reports References
Bds 4,4'-bipyridyl sulfide 1 65
bps 4.4'-bipyridylsulfide 1 67
bps 4,4'-bipyridyl sulfide 2 90
bps 4,4'-bipyridyl sulphide 2 56
dbs 4.4'-dipyridylsulfide 2 74, 89
54, 58-60, 62,
dps 4,4’-dipyridylsulfide 23 g;: g?: ;2: ;3:
93
dps 4.4’-dipyridyl sulfide 11 66, gj” 91 i 83,
dps di(4-pyridyl)sulfide 6 78, 81, 82
dps dipyridin-4-ylsulfane 1 94
dps 4,4'-dipyridinesulfide 1 87
dps 4,4'-sulfanediyldipyridine 1 77
Dps 4,4'-dipyridyl sulfide 2 76
DPS di(4-pyridyl)sulphide 4 71
S-(Py)2 di(4 pyridinyl) sulfide 1 95
tdp 4,4’-thiodipyridine 2 80
tdpy 4,4’-thiodipyridine 1 64
4,4'-thiodipyridine 1 57
4-dps 4,4'-dipyridyl sulfide 1 70
4,4'-dps 4,4'-Dipyridylsulfide 1 73

4,4'-dps di(4-pyridyl)sulfide 2 55




Table S4. Coordination networks with dpds identified through a systematic search of the Cambridge Structural Database (CSD).

Compound Formula Compound type Methodology Metal Year CCDC Reference
C30H28NsO3sS6Cu o
1 ID Coordination ¢ ' iffiicion Cu(ll) 2012  RAFVIF 96
[Cu(dpds),(H0),](3pySOs), polymer
C30H3256010NgZn 1D Coordina
oordination .
2 [Zn(dpds)2(H20),](3pySO3)y polymer Stirring Zn(l) 2012 RAFVOL 96
2H,0
Cy3H3454014N4Zn 1D Coordinati
oordination )
3 [Cu(dpds)»(H,0),](Hfum),- polymer Reflux/ filtration Cu(ll) 2012 RAFVUR 96
4H,0
CrsH3654015N4Zn D Coordinat Hydro(solvo)
oordination ydro(solvo
4 [Zn(dpds),(H,0),](Hfum),- polymer thermal Zn(Il) 2012 RAFWAY 96
5H,0
C41H36MnN4OgS,
1D Coordination o
5 [ {Mn(O,CPh),(dpds),} - (H,0)- polymer Slow diffusion Mn (II) 2012 GEBZAQ 97
0.5(HO,CPh)],
Ml’l2C54H4oN1 4S 1 40 . . Reaction
6 ID Coordination .\ o/erystallizati  Mn(I) 2012 CEWFOB 98

[MHO\ICS)Q(dpdS)Q]Q -DPDS- HzO

polymer

on



10

11

12

13

14

15

FeCyH»NgO386
[Fe(NCS)y(dpds),]-3H,0
CoCyH,0N6O,S6
[Co(NCS)y(dpds),]- 2H,0
Ca6H24N4O10S4Zn,
Zny(dpds)>(C3H,04),(H,0),
C1oHgCILN,S,Zn
(C1oHsCloN,S,7Zn),
C,0HgBr,N»S,Zn
[ZnBry(u-dpds)],
C44H38N1,07S4Co,
[Cox(NCO)4(dpds)4]-3H,0
C15sH19N2O9S,Zn

{[Zn(C,oH,0g3)0.5(dpds)]-
SHZO] } n

C12H30N2S,0,0Cu
[CU(C204)(dpdS)] ‘6H,0

C22H22N4S4O7CU

1D Coordination
polymer

1D Coordination
polymer

2D Coordination
polymer

1D Coordination
polymer

1D Coordination
polymer

3D Coordination
polymer

2D Metal-organic
framework

2D Coordination
polymer

1D Coordination
polymer

Slow diffusion

Slow diffusion

Stirring under heat/

crystallization

Slow diffusion

Slow evaporation

Slow evaporation

Slow diffusion

Hydrothermal

Stirring/ reflux/
filtration

Fe(1I)

Co(1I)

Zn(1I)

Zn(1I)

Zn(1I)

Co(1I)

Zn(1I)

Cu(I)

Cu(I)

2012

2012

2012

2012

2013

2013

2013

2013

2013

CEWFUH

CEWGAO

KESBAN

YEJDAU

REPTEN

GIDWEX

PITRIV

DIMPUM

DIMYUV

98

98

99

100

101

102

103

104

104



16

17

18

19

20

21

22

[Cu(C204)(dpds),]-3H,0

(C36H26C02N6O14S4)n
[Co(H20)(dpds)(nip)].
Ca6H28Cu,N,0gS,
[Cu,[CH3(CH),COO]4(dpds)]
(C30H2,C0,N4015S4)

[Co(dpds)(pyromellitate) s
(H20)2]a

(C30H24CuN4010S4)

[Cu(dpds),(pyromellitate)],-
2n(H2O)

(C34HgoN4N1,02554)

[Niy(dpds),(pyromellitate)
(H20)2],2n(C,HsOH)- 11n(H,0)

C16H;7N,058,Cu
Cu(H,0)(dpds)(2-MGA)
Ci6H,5.5N>05 58,71
Cu(H,0)(dpds)(2-MGA)

3D Coordination
polymer

1D Coordination
polymer

2D Metal-organic
framework

2D Metal-organic
framework

3D Metal-organic
framework

2D Coordination
polymer

3D Coordination
polymer

Hydrothermal

Slow diffusion

Slow diffusion

Slow diffusion

Slow diffusion

Slow evaporation

Hydrothermal

Co(II)

Cu(II)

Co(II)

Cu(Il)

Ni(II)

Cu(Il)

Zn(1I)

2013

2014

2014

2014

2014

2014

2014

KEYDOJ

KOFZEM

LOCZAG

LOCZEK

LOCZIO

AJULIC

AJULEY

61

70

105

105

105

106

106



23

24

25

26

27

28

29

Ci6Hi6.5N205255,Cd

[Cd(H,0)(dpds)(2-MGA)]-
0.25H,0

C26H1 9N886F6C1

{[Fe(NCS)y(dpds),]
2(2,5-DCP)},

C26H24N4O6S4ZI’1
[Zn(muco)(dpds)>(H,0)]

C44H40N4014S4Zn,
{[Zn(2,6-ndc)(dpds)]-3(H20)},
CyH,CoN,05S,

{[Co(2,6-ndc)(dpds)
(H20)2]-2(H;0) }x

Cs6Hs52CdaNgO14S6

{[Cd,(2,6-ndc),(dpds),(H,0),]
(dpds)-(EtOH)-3(H,0)} 4

C37.24H36.96N4017.24547n;

{[Zn(bdc)(dpds)]-0.62(MeOH)-2
(H20)}x

3D Coordination
polymer

3D Coordination
polymer

2D
Supramolecular
network

2D Metal-organic

framework

2D Metal-organic
framework

3D Metal-organic
framework

2D Metal-organic
framework

Slow evaporation

Stirring/ slow
evaporation

Stirring/ slow
evaporation

Slow diffusion

Slow diffusion

Slow diffusion

Direct mixing

Cd(1n)

Fe(1l)

Zn(1I)

Zn(1I)

Co(1I)

Cd(I1)

Zn(1I)

2014

2015

2015

2015

2015

2015

2015

AJULAU

GOTZEW

JUFZAN

wWuUGZUV

WUHBAE

WUJRUQ

GOVYOH

106

107

74

108

108

108

109



30

31

32

33

34

35

36

37

CisH9N2014S,Zn

{[Zn(C,0H,03)o 5(dpds)]-
SHZO] } n

C34H46CusNeO20S4

[Cux(PDA),(dpds)»(H20).].
8H,O

C36H26CuaN4O4S,
[Cu(L)]o(dpds)],

C,0HsCLHgN,S,
[Hg(dpds)Cl]n
C,oHsBryHgN,S,
[Hg(dpds)Br],
CioHsHgN,S,
[Hg(dpds)L]n
CysHy3CunN4O14S,

{[Cuz(2,5-pdc)(dpds)(H20),]-

3H,0-McOH},
C74H46Cd3N401284

[Cd»25C00.75(BTB)2(dpds),]-
xSol

2D Metal-organic
framework

Dimeric structure
linked through H-
bonding to form
1D chain.

3D Coordination
polymer

1D Coordination
polymer

1D Coordination
polymer

1D Coordination
polymer

3D Metal-organic
framework

2D Metal-organic
framework

Slow diffusion

Slow diffusion

Stirring/recrystallizat

10on

Slow diffusion

Slow diffusion

Slow diffusion

Slow diffusion

Single-crystal to
single-crystal
conversion

Zn(1I)

Cu(II)

Cu(Il)

Hg(ID)

Hg(II)

Hg(II)

Cu(Il)

Cd(In),
Co(1l)

2015

2016

2017

2017

2017

2017

2018

2018

PITRIVO1

AKIPER

XESWUQ

NATGIB

NATGOH

NATKEB

IMOTAGO2

KINSEI

110

111

112

113

113

113

114

81



38

39

40

41

42

43

44

45

46

C4gH74CuuN7013 55,
[Cuy(caproxy)s(dpds)],

CisH4FeN1»2Sq
[Fe(dpds), {C(CN)sj2]-dpds
CyH2oBoFeNgS,y
[Fe(dpds)>,(NCBH;),]
CyH»3FeNgS405 5Se,
[Fe(dpds),(NCSe),]-3.5H,0
CsHo4CoN4O6S4
[Co(dpds)(bdc)(H,0),].dpds
CosH4CuN4O6S4
[Cu(dpds)(bdc)(H,0);]
C4sH41Mn,N 1¢NbO4 5S¢
[Mn(dpds),]o[Nb(CN)g]-6H,O
CisHsN305S,Zn
[Zn(5-AIP)(dpds)]-H,O
C40H3:M0,NgNi,OgSg
[Ni(dpds)],MoQO4

1D Coordination
polymer

1D Coordination
polymer

1D Coordination
polymer

1D Coordination
polymer

2D Metal-organic
compound

2D Coordination
polymer

3D Coordination
framework

2D Coordination
polymer

2D Pillared
rhomboid grids

Single-crystal to
single-crystal
conversion

Stirring/crystallizatio

n

Slow diffusion

Slow diffusion

Slow diffusion

Slow evaporation

Slow diffusion

Slow diffusion

Stirring/ filtration

Cu(I)

Fe(Il)

Fe(l)

Fe(1I)

Co(II)

Cu(II)

Mn(II)

Zn(1I)

Ni(ID),
Mo(VI)

2018

2019

2019

2019

2020

2020

2021

2021

2022

ONODED

XOHKOX

XOHLAK

XOHLIS

NUJFAC

ELUWEQ

PARLON

ITESUY

YAPBAW

115

116

116

116

117

118

119

120

121



C40H32N8Ni20888W2 : .
47 2D Pillared Stirring filtration ~ U1> 2022 YAPBEA 121
[Ni(dpds)],WO, rhomboid grids W(VI)
C40H32CI‘2N8Ni208Sg; : .
48 2D Pillared Stirring/ filtration 0> 2020 YAPCEB 121
[Ni(dpds)],CrOs rhomboid grids Cr(VI)
C20H16CL1N4S4'2(BF4) _ : sl . .
49 1D Metal-organic ~ Stirring/crystallizatio Cul) 2024 QOGTUF 17
(Cu(BF4)y(dpds),) framework n
CoHa0CuNO1754 1D Coordination Reaction mixture/
50 [Cu,(dpds)»(CsOs)>(H,0),]: 1 Cu(Il) 2024 COZRAO 123
polymer crystallization
3H,0
C;sH,4CuN,05S, i . Reaction
o 2P t{v{etal "SI mixture/erystallizati - Cu(ll) 2024 COZRES 123
[Cu(dpds)(Cs0s5)]-3H,0 ramewor o
C32Ha0Cu2N402084 . Reaction
3D Metal-organic . lizati 2004
52 [Cuy(dpds)s(C50s),]-9H,0- framework mixture/crystallizati ~ Cu(II) 0 COZRIW 123
on

C,HsOH

3pySO;H= pyridine-3-sulfonic acid; Hfum= fumaric acid; H,nip= 5-nitroisophthalic acid; H,MGA= (RS)-2-methyl glutaric acid;
2,5-DCP= 2,5-dichloropyrazine; muco= trans-muconate; 2,6-ndc= 2,6-naphthalene dicarboxylic acid; bdc= benzenedicarboxylic acid; PDA=
2,4-pyridine; H,L= salicylidene-2-aminopheno; 2,5-pdc= 2,5-pyridine-dicarboxylate; BTB= benzene-1,3,5-tribenzolate; Hcaproxy= 3-
carboxy-2,2,5,5-tetramethyl1-pyrrolidinyloxy; 5-AIP =5-amino isophthalate.



Table S5. A set of abbreviations used to designate 4,4’-dipyridyl disulfide (dpds) through

a systematic search of the Cambridge Structural Database (CSD).

Abbreviations Nomenclature Number of reports References
Ald aldrithiol 1 111
ald-4 aldrithiol-4 1 114
Ald-4 aldrithiol-4 1 120
aldrithiol 2 103,110
aldrithiol 4,4'-dipyridyldisulfide 3 105
aldrithiol 4,4'-dipyridyl disulphide 3 108
bpds 4,4'-bipyridyldisulphid 1 117
bpds 4,4'-dipyridyldisulfide 1 99
bpds bis(4-pyridyl)disulfide 3 113
dbds 4,4'-dipyridyldisulfide 1 74
dpds 4,4’ -bipyridinedisulfide 1 122
61, 96, 109,
dpds 4.4’ -dipyridyldisulfide 13 116, 119,
123
Dpds 4,4'-dipyridyldisulfide 3 106
DPDS 4,4'-bipyridinedisulfide 3 121
DPDS 4,4'-dipyridyl disulfide 1 81
DPDS di(4-pyridyl)disulfide 4 98, 102
dtdp 4,4°-dithiodipyridine 2 100, 101
pds 4,4'-dipyridyl disulfide 1 115
SS 4,4'-dipyridyldisulfide 2 104
4,4'-dtp 4,4'-dithiopdipyridine 1 97
4,4'-dtdp 4,4'-dithiodipyridine 1 112
4-dpds 4,4’-dipyridyldusulfide 1 118
4-dpds 4,4’-dipyridyl disulfide 1 70
4-DPS 4,4’-dipyridyl disulfide 1 107




Table S6. Selected bond distances for compounds 1-2.

Atom labels 1 (M= Co) 2 (M=Cu)
M1—Ol 2.218(4) 2.034(3)
M1—02 2.049(3) 1.989(3)
MI1—N3 2.100(5) 1.997(3)
M1—O5! 2.048(3) 1.977(3)
M1—O6 2.194(5) 2.499(3)
M1—N4ii 2.123(5) 2.263(3)
Cl1—C2 1.536(8) 1.541(6)
C9—Cl10 1.553(8) 1.550(5)
S1—C15 1.776(7) 1.771(4)
S1—C16 1.776(7) 1.781(5)
N1—Cl1 1.339(7) 1.318(6)
N1—C3 1.412(8) 1.422(5)
N2—C7 1.418(7) 1.416(6)
N2—C9 1.333(8) 1.333(5)

C15—S1—Cl16 101.1(3) 101.2(2)

C1—N1—C3 127.6(5) 127.0(4)

C7—N2—C9 126.2(5) 125.8(4)

Table S7. Geometric analysis of the coordination environment of the Co'! (1) and Cu'' (2)
ions, showing the site symmetry approximation derived from continuous shape measures

(CShM; via SHAPE!24),

Label Symmetry Shape CShM*
(0)) 2
HP-6 Degp, Hexagon 15.103 15.625
PPY-6 Csy Pentagonal pyramid 25.462 25.499
JBTPR-8 Cov Octahedron 16.441 17.359
TPR-6 Dsp Trigonal prism 21.941 23.105
JPPY-6 Csy Johnson pentagonal pyramid J2  25.329 25.733

*The approach is incorporated into the program SHAPE, which is readily available for
public use.'?* The values of SHAPE measures relative to other reference polyhedra of 1
are significantly larger. The lower limit corresponds to structures that exactly match the

shape of symmetry, and increasing values result in increasingly distorted structures.!'



1. Ab Initio Energy Levels

The SA-CASSCF(7,5)/SC-NEVPT2 calculations yielded 50 spin-free states. The
energies of the lowest 7 states, corresponding to the parent “F and *P terms, are provided
in Table S8. The subsequent spin-orbit coupling (SOC) calculation generated 120 spin-

orbit states.

Table S8. Energies of the lowest spin-free states from NEVPT2 calculation.

State (S = 3/2) Symmetry Energy (cm)

1 *F 0.0

2 *F 343.6

3 “F 1614.1

4 ‘F 8549.9
5 ‘P 8750.9
6 *F 8894.6
7 ‘P 17984.9

Table S9. Energies of the lowest 12 spin-orbit states (Kramers Doublets 1-6).

State Energy (cm™)

1,2 0.0

3,4 228.1

5,6 651.5

7,8 926.5
9,10 1975.2
11,12 2032.8

2. Ground State Spin Hamiltonian Parameters (Multiplet 1)

The ground S=3/2 pseudospin multiplet (composed of states 1-4) was analyzed. The
principal values and orientation vectors for the g-tensor and D-tensor relative to the
molecular Cartesian frame are provided in Tables S10 and S11, respectively.

Table S10. Selected bond distances for compounds 1-2.

AXxis g-value Vy Vy A\

gy (Xm) 1.8857 -0.15137 -0.98840 -0.01269

gy (Ym) 2.1449 0.98848 -0.15134 -0.00348

g, (Zm) 3.1130 0.00152 -0.01307 0.99991

Table S11. Selected bond distances for compounds 1-2.

AXxis D-value (cm™) Vy Vy \A
D, (Xa) -70.657 0.00842 -0.01074 0.99991
Dy (Ya) 10.992 0.99936 -0.03470 -0.00879
D, (Za) 59.665 -0.03479 -0.99934 -0.01044




The D and E parameters derived from these tensor components are D = -106.0 cm™!' and

E=-243 cm.

3. Ground State ZFS Matrix and QTM Analysis

The large rhombicity (|E/D| = 0.23) induces significant mixing of the Mj states. This is
quantified in the ab initio ZFS matrix (Table S12), which shows large off-diagonal
elements (e.g., 41.0 + 9.8i cm™) coupling the ground and excited doublets.

Table S12. Selected bond distances for compounds 1-2.

-3/2) -1/2) [+1/2) [+3/2)
(-32| -105.98 0.69-0.89i  41.00+9.79i  0.00 - 0.00i
(-172| 0.69 + 0.89i 105.98 0.00-0.00i  41.00 +9.79i
(+172] 41.00-9.79i  0.00 + 0.00i 105.98 -0.69 + 0.89i
(+3/2| 0.00 +0.00i  41.00-9.79i  -0.69 - 0.89i -105.98

4. Anisotropy of Excited Multiplets

The spin Hamiltonian parameters for all 10 calculated multiplets (9 of S =3/2, 1 of S =
1/2) are summarized in Table S13.

Table S13. Energies, g-tensor values, and ZFS parameters for all calculated multiplets.

Mult. Energy Range (cm™) 2« gy g, D(em™) E(cm™)
1 0-228 1.886 2.145 3.113 -106.0 -24.3
2 651 —926 2.101 1.957 1.094 134.6 -16.2
3 1975 —2032 1.710 1.825 1.962 27.9 -4.3
4 8861 — 8905 2.124 2.037 1.830 -21.1 -3.7
5 9058 — 9099 1.605 1.864 2.164 19.4 -4.0
6 9250 — 9387 1.441 1.508 1.997 -66.5 -8.9
7 10711 — 12899 0.985 0.985 0.993 1051.2 -175.0
8 18272 — 18312 1.630 1.691 1.801 19.7 -1.9
9 18543 — 18779 0.718 0.896 1.293 111.2 -22.8
10 19080 1.006 1.291 1.780 N/A N/A




5. Crystal Field Parameters

The ab initio crystal field was fitted to the spin-free 4F term (L=3). The resulting Extended
Stevens Operator (O;9) parameters (B;?) are given in Table S14.

Table S14. Ab initio crystal field parameters B4 (in cm™) for the L=3 (*F) ground term,
using the Extended Stevens Operator definition.

k q Biq (cm™) k q Biq (cm™)
2 2 47.500 4 0 -10.668
2 -1 0.310 4 1 45313
2 0 24.891 4 2 9.100
2 1 -28.088 4 3 40.849
2 2 -39.733 4 4 -12.456
4 -4 72.742 6 -6 0.339
4 -3 86.807 6 -5 0.538
4 2 -15.727 6 -4 0.159
4 -1 56.165 6 -3 0.307
6 2 0.394
6 -1 -0.282
6 0 0.024
6 1 -0.380
6 2 -0.020
6 3 0.859
6 4 0.091
6 5 1.970
6 6 0.236

Table S15. Generalized Debye parameters from the ac data measured in absence of a

magnetic field for 1.

T/K H/ Oe T/s ¥s / em3mol! ¥y / cm*mol! [}
2.59892 0.343 8.33x107 0.88099 0.89744 0.09209
2.79978 0.343 8.10x10- 0.8187 0.83491 0.13221
3.00027 0.343 7.02x107 0.76579 0.77838 2.61x108
3.19881 0.343 7.05x107 0.7187 0.73051 2.26x107
3.39925 0.343 6.89x107 0.67666 0.68883 0.06975
3.60116 0.343 6.52x107 0.63943 0.65064 0.05305
3.79996 0.343 5.12x103 0.60275 0.61929 0.37666
3.99919 0.343 6.81x107 0.57612 0.58687 0.10576
4.4995 0.343 5.45x107 0.51272 0.52104 3.10x1020
5.50019 0.343 6.19x107 0.4203 0.42901 0.25124
5.99961 0.343 5.26x107 0.38668 0.39234 1.09x10-10

6.50013 0.343 4.59x10°° 0.35712 0.36183 1.34x10-16




Table S16. Generalized Debye parameters from the ac data measured with an applied

field of 1kOe for 1.

T/K H/ Oe T/s ¥s / em3mol! ¥y / cm3mol! [}
2.00304 1000.137 3.76x10+ 0.13676 0.99959 0.1341
2.20328 1000.137 3.34x10* 0.12744 0.94288 0.1189
2.40255 1000.137 2.94x10* 0.12035 0.88628 0.10141
2.60222 1000.137 2.61x10* 0.11284 0.8381 0.09235
2.80221 1000.137 2.30x10* 0.10633 0.79027 0.08267
3.00224 1000.137 2.01x10* 0.10136 0.74512 0.07209
3.20213 1000.137 1.78x10* 0.09513 0.70759 0.07076
3.40193 1000.137 1.56x10 0.09062 0.67016 0.06446
3.60153 1000.137 1.37x10* 0.08573 0.63778 0.06305
3.80155 1000.137 1.21x10* 0.0821 0.60649 0.05862
4.00085 1000.137 1.06x10* 0.07751 0.57893 0.05882
4.50096 1000.137 7.65x107 0.07131 0.51449 0.04573
5.00068 1000.137 5.63x107 0.06524 0.46631 0.04207
5.50075 1000.137 4.14x10° 0.06083 0.42426 0.0366
6.00011 1000.137 3.08x107 0.05693 0.38896 0.03133
6.49973 1000.137 2.32x107 0.05459 0.35946 0.0269
6.99932 1000.137 1.76x10° 0.05113 0.3339 0.02442
7.49891 1000.137 1.32x107 0.04541 0.31197 0.02931
7.99941 1000.137 1.01x10° 0.04158 0.29268 0.03328
8.49913 1000.137 7.58x10° 0.0334 0.27496 0.03425

8.999 1000.137 5.61x10° 0.02565 0.26031 0.05053

9.49887 1000.137 3.82x10° 2.03x10-12 0.24667 0.06824




Table S17. Generalized Debye parameters from the ac data measured with an applied

field of 1kOe for 2.

T/K H/ Oe T/s ¥s / em3mol! ¥y / cm3mol! [}
1.99999 1000.266 1.63x10* 0.04429 0.08521 0.09875
2.20018 1000.266 2.04x10* 0.05018 0.09326 0.08176
2.40022 1000.266 2.68x10* 0.05637 0.10794 0.13947
2.6001 1000.266 3.08x10 0.06098 0.11572 0.15829
2.80028 1000.266 3.00x10+ 0.06367 0.11389 0.10773
3.00019 1000.266 3.29x10* 0.06356 0.11623 0.16315
3.20011 1000.266 3.00x10+ 0.06152 0.11221 0.15091
3.39999 1000.266 2.83x10* 0.06012 0.10805 0.15715
3.59981 1000.266 2.68x10* 0.05832 0.10462 0.14349
3.80002 1000.266 2.32x10* 0.05561 0.10035 0.14133
4.00007 1000.266 2.08x10* 0.05325 0.09563 0.12881
4.49984 1000.266 1.74x10* 0.04759 0.08753 0.13278
5.00009 1000.266 1.35x10* 0.04261 0.07799 0.11149
5.5001 1000.266 1.10x10 0.03782 0.07152 0.14518
5.9998 1000.266 8.52x107 0.03481 0.06404 0.11137
6.4999 1000.266 7.20x107 0.03107 0.06021 0.1516
7.00011 1000.266 5.77x107 0.02902 0.05464 0.1236
7.49996 1000.266 4.64x107 0.02611 0.05094 0.15513
7.99988 1000.266 4.17x10° 0.02502 0.0473 0.11817
8.49983 1000.266 2.57x107 0.01849 0.04596 0.31435
9.00002 1000.266 2.60x10° 0.02049 0.0414 0.19429
9.49998 1000.266 2.46x107 0.02049 0.03854 0.13666
10.00009 1000.266 1.43x10° 0.01523 0.03723 0.304
10.50047 1000.266 1.33x10° 0.01499 0.03461 0.2571

11.50001 1000.266 1.27x10°° 0.01557 0.0308 0.2066
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Figure S1. FTIR spectra of 1 (black trace) and 2 (red trace).
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Figure S2. Thermogravimetric curves for 1 (a) and 2 (b).
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Figure S3. Experimental (red) and calculated (black) PXRD patterns for 1.
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Figure S4. Experimental (red) and calculated (black) PXRD patterns for 2.
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Figure S5. Calculated structure of the Co(Il) in (1) showing the orientation of the

principal axes of the g-tensor (g, gy, g,) for the ground S = 3/2 multiplet. Color code: Co,

pink; C, grey; N, blue; 0, red; S, yellow; H, white.
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Figure S6. (a) Frequency dependence of the ac susceptibility for 1, measured in the
absence of a magnetic field. (b) Cole-Cole plot obtained from the frequency-dependence
of the ac susceptibility for 1 measured in the absence of a magnetic field. Lines represent
the best-fit curves obtained using a generalized Debye model with one relaxation process

according to the description in the text.
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Figure S7. Arrhenius-like plot Int vs. T~! Temperature dependence of the relaxation time
for the compound 1. (- fitted by model Raman, black). (measured in the absence of a

magnetic field).
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