SUPPORTING INFORMATION

Volume-dependent catalytic efficiency of highly durable Au@Ag-Pt core@multi-shell nanoparticles in methylene blue reduction

Hu-Jun Lee^{1, 2}, Anh Thi Ngoc Dao^{3, *}, Kenji Kaneko^{1, *}

¹Department of Materials, Kyushu University, 744, Motooka, Nishi, Fukuoka, 819-0395, Japan ²Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonbuk, 55324, Republic of Korea

³Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki, 852-8521, Japan

^{*} Corresponding authors: kaneko.kenji.513@m.kyushu-u.ac.jp: anh.dao@nagasaki-u.ac.jp

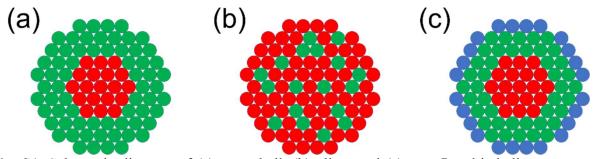
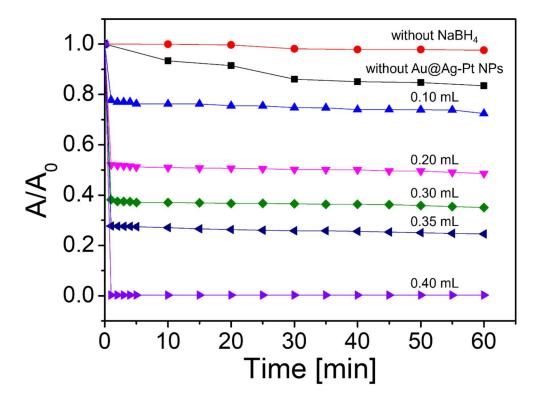



Fig. S1. Schematic diagram of (a) core-shell, (b) alloy, and (c) core@multi-shell structures, where each color represents a different element.

Fig. S2. Time-dependent absorbance variation of methylene blue (MB) during the reduction reaction, where A is the absorbance at 664 nm and A_0 is the initial absorbance.