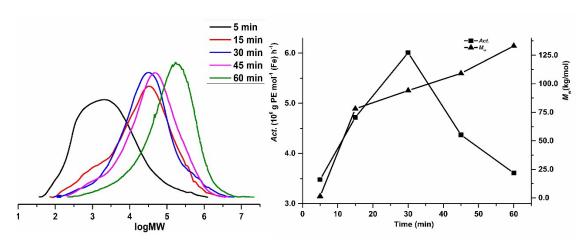
Modulation of 2-imino-6,7-dihydroquinlin-8(5*H*)-imine-iron ethylene polymerization catalysts through (cyclo)alkyl, benzhydryl and halide substitution

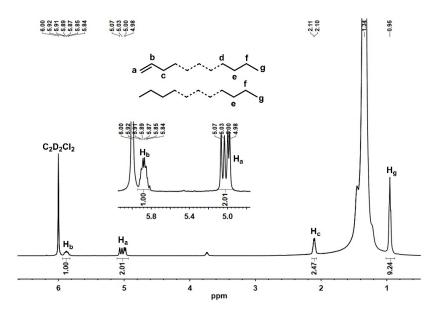
Randi Zhang, a,b Yanping Ma,b Gregory A. Solan,*b,c Yizhou Wang,b Jiahao Gao,b Tongling Liang,b Wen-Hua Sun*b

Table of Contents


1.	Additional catalytic data and polymer data from runs using Fe5/MAO	S2
2.	Additional ¹ H and ¹³ C NMR data for the polymers	S2
3.	Proposed mechanistic pathways for polymer formation	S5
4.	Crystallographic data	S5
5.	References	S6

^a SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China. Email: <u>zhangrd.bjhy@sinopec.com</u>

^b Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: whsun@iccas.ac.cn. Tel: +86-10-62557955.


^c Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK. E-mail: gas8@leicester.ac.uk. Tel: +44-116 2522096

1. Additional catalytic data and polymer data from runs using Fe5/MAO

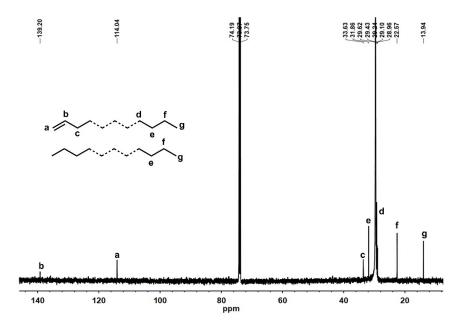
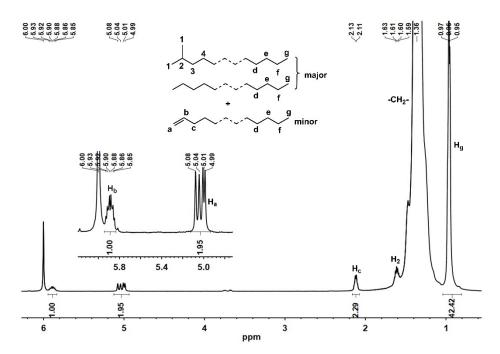
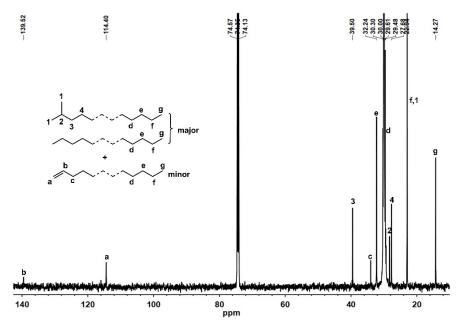


Figure S1. For **Fe5**/MAO: (a) GPC traces showing $\log M_{\rm w}$ as a function of reaction time (entries 8, 11 – 14, Table 3) and (b) plots of catalytic activity and $M_{\rm w}$ of the polymer versus reaction time.


2. Additional ¹H and ¹³C NMR data for the polymers


Figure S2. ¹H NMR spectrum of the polyethylene obtained using **Fe7**/MAO at 40 °C including an expansion of the vinylic region (entry 16, Table 4); recorded in tetrachloroethane-*d*₂ at 100 °C

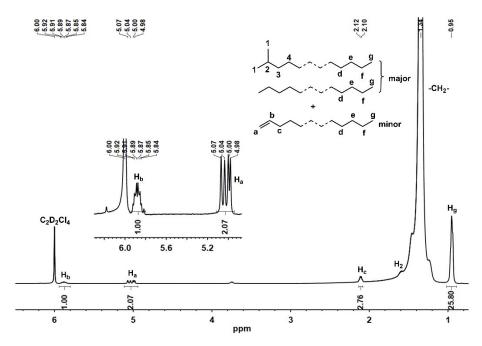

Figure S3. ¹³C NMR spectrum of the polyethylene obtained using **Fe7**/MAO at 40 °C (entry 16, Table 4); recorded in tetrachloroethane- d_2 at 100 °C

Figure S4. ¹H NMR spectrum of the polyethylene obtained using **Fe4**/MMAO at 60 °C (entry 4, Table 4); recorded in tetrachloroethane- d_2 at 100 °C

Figure S5. ¹³C NMR spectrum of the polyethylene obtained using **Fe4**/MMAO at 60 °C (entry 4, Table 4); recorded in tetrachloroethane- d_2 at 100 °C

Figure S6. ¹H NMR spectrum of the polyethylene obtained using **Fe5**/MMAO at 60 °C including an expansion of the vinylic region (entry 5, Table 4); recorded in tetrachloroethane- d_2 at 100 °C

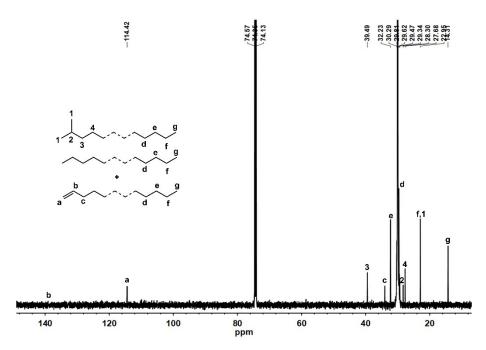


Figure S7. 13 C NMR spectrum of the polyethylene obtained using Fe5/MMAO at 60 $^{\circ}$ C (entry 5, Table 4); recorded in tetrachloroethane- d_2 at 100 $^{\circ}$ C

3. Proposed mechanistic pathways for polymer formation

Figure S8. Proposed mechanistic pathways to account for the different polymer end groups generated by the iron catalysts.¹⁻⁴

4. Crystallographic data

Single crystals of **Fe3** and **Fe5** suitable for the X-ray determinations were obtained by layering heptane onto a dichloromethane solution of the corresponding complex at room temperature. With graphite monochromated Cu-K α radiation (λ = 1.54184 Å) at 170(2) K, cell parameters were obtained by global refinement of the positions of all collected reflections. The data were corrected for Lorentz and polarization effects (SAINT) and semiempirical absorption corrections based on equivalent reflections were applied (SADABS). Using Olex2,⁴ the structure was solved with the SHELXT structure solution program⁵ using Intrinsic Phasing and refined with the SHELXL refinement package⁶ using Least Squares minimization. All hydrogen atoms were placed in calculated positions. Details of the X-ray structure determinations and refinements are provided in Table S1.

Table S1 Crystal data and structural refinements for Fe3 and Fe5

	Fe3	Fe5
CCDC number	2482813	2482814
Empirical formula	$C_{63}H_{64}Cl_6FeN_3$	$C_{87}H_{81}Cl_2FeN_3$
Formula weight	1131.72	1295.29
Temperature/K	169.99(14)	170.00(16)
Wavelength/Å	1.54184	1.54184
Crystal system	triclinic	monoclinic
Space group	P-1	$P2_1/c$
a/Å	9.3002(4)	28.2417(18)
b/Å	13.7002(6)	17.0632(12)
c/Å	22.4970(7)	17.8586(12)
Alpha/°	96.212(3)	90
Beta/°	90.550(3)	101.352(6)
Gamm/°	100.482(4)	90
Volume/Å ³	2800.8(2)	8437.6(10)
Z	2	4
$D_{ m calcd}/({ m g/cm^{-3}})$	1.342	1.020
μ/mm^{-1}	5.117	2.317
F(000)	1182.0	2736.0
Crystal size/mm ³	$0.15\times0.1\times0.05$	$0.15\times0.12\times0.1$
2θ range (°)	6.602 to 151.492	6.084 to 152.98
Limiting indices	$-11 \le h \le 11, -15 \le k \le 17, -28 \le 1 \le 28$	$-34 \le h \le 35, -20 \le k \le 21, -22 \le 1 \le 21$
No. of reflections collected	36885	66083
No. unique reflections	11095	16933
R _{int}	0.0782	0.2270
No. of parameters	634	958
Completeness to θ	0.951	0.955
Goodness of fit on F^2	1.062	0.931
Final R indexes	$R_1 = 0.0908$, $wR_2 = 0.2673$	$R_1 = 0.1060, wR_2 = 0.2488$
$[I > = 2\sigma(I)]$		
Final <i>R</i> indexes (all data)	$R_1 = 0.1222$, $wR_2 = 0.2973$	$R_1 = 0.1932$, $wR_2 = 0.3119$
Largest diff. peak and hole/(e Å ⁻³)	1.42/-0.91	0.72/-0.93

4. References

- 1. G. J. P. Britovsek, M. Bruce, V. C. Gibson, B. S. Kimberley, P. J. Maddox, S. Mastroianni, S. J. McTavish, C. Redshaw, G. A. Solan, S. Stromberg, A. J. P. White and D. J. Williams, *J. Am. Chem. Soc.*, 1999, **121**, 8728-8740.
- 2. Z. Wang, G. A. Solan, W. Zhang and W.-H. Sun, Coord. Chem. Rev., 2018, 363, 92-108.
- 3. V. C. Gibson and G. A. Solan, In Catalysis without Precious Metals; Bullock, R.M., Ed.; Wiley-VCH: Weinheim, Germany, 2010; pp. 111-141.
- 4. Y. Yuan, Z. Yan and S. Dai, Inorg. Chem., 2025, 64, 3384-3391.

- 5. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.
- 6. G. M. Sheldrick, Acta Crystallogr., 2015, A71, 3.
- 7. G. M. Sheldrick, 2015, C71, 3.