Supplementary Materials

Fabrication of CuO/BiVO₄ composites for enhanced visible-lightdriven photocatalytic antibacterial activity

Jiao Zhao*, He Yang, Chen Chen, Tong You, Xingyi Yu, Yan Zhang, Hongyan Liu, and Yimin Zhu*

Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian 116026, China.

* Corresponding E-mail: <u>zhaojiao@dlmu.edu.cn</u>, <u>ntp@dlmu.edu.cn</u>

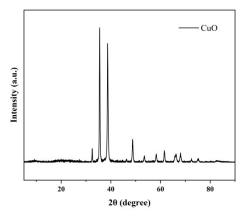


Figure S1. XRD pattern of CuO

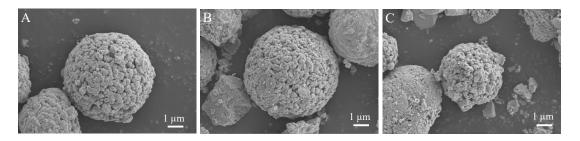


Figure S2. SEM images of CuO/BiVO₄ composite materials (A: CuO/BiVO₄-10%; B: CuO/BiVO₄-16.7%; C: CuO/BiVO₄-20%)

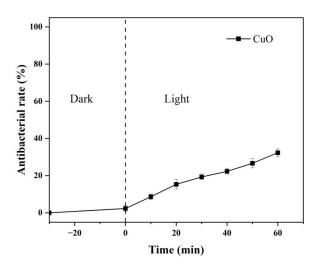


Figure S3. Antibacterial performance of CuO

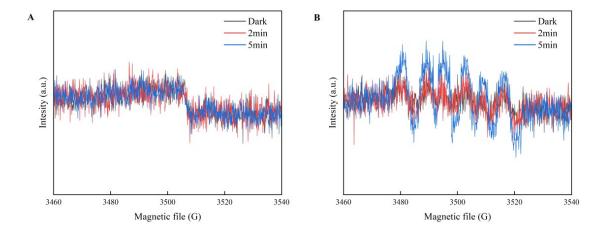


Figure S4. EPR spectra of $\cdot O_2$ - produced by (A) BiVO₄ and (B) CuO/BiVO₄

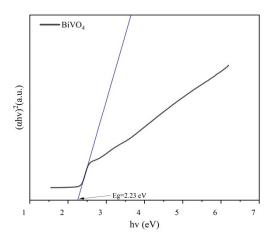


Figure S5. UV-Vis spectrum of BiVO₄: relationship between (αhv)² and hv

Based on the literature, the band gap of CuO was 1.7 eV, with the VB potential of 2.16 eV and CB potential of 0.46 eV^[1].

Based on the UV-vis DRS results, the band gap value of BiVO₄ was calculated by Equation (1), and a Tauc plot was constructed.

$$(\alpha h v)^n = A(h v - Eg) \tag{1}$$

Where A, Eg, α , h, and v denote the constant, band gap energy, absorption coefficient, Planck constant, and optical frequency, respectively. The value of n depends on the type of electronic transition in the semiconductor: n=2 for semiconductors with direct allowed transitions and n=1/2 for those with indirect allowed transitions. Since BiVO₄ is a semiconductor with direct allowed electronic transitions, Eg can be derived from the intercept of the $(\alpha hv)^2$ curve on the x-axis. It can be seen from Figure S5 that the Eg value of BiVO₄ is 2.23 eV. The conduction band edge (E_{CB}) and valence band edge (E_{VB}) of a semiconductor can be calculated using the Equations (2-3)^[2].

$$E_{CB}=X-E_C-1/2Eg$$
 (2)

$$E_{VB} = E_{CB} + Eg \tag{3}$$

Where X is the absolute electronegativity of the atom semiconductor; E_C is the energy of free electrons of the hydrogen scale (4.5 eV); E_C is the band gap of semiconductor; and E_{VB} is the VB edge potential and the E_{CB} is the CB edge potential.

It can be calculated that the valence band edge (E_{VB}) of $BiVO_4$ is 2.65 eV and the conduction band edge (E_{CB}) of $BiVO_4$ is 0.42 eV.

Table S1 Antibacterial performance of BiVO₄ based nanomaterials

Materials	Preparation method	Concentration (µg/mL)	E. coli (CFU/mL)	Antibacterial rate	Ref.
V ₂ O ₅ /BiVO ₄	Precipitation	1000	108	99%	[3]
BiO ₄ /Bi ₂ WO ₆ /WO ₃	Hydrothermal	1000	10^{6}	100%	[4]
$BiVO_4/g$ - C_3N_4	In situ solid-state	800	10^{7}	99%	[5]
Ag/BiVO ₄	Hydrothermal	1200	10^{6}	100%	[6]
Fe-doped BiVO ₄	Sol-Gel	1000	10^{6}	100%	[7]
Biochar/BiVO ₄	Impregnation- calcination	900	10^{6}	99.5%	[8]
$AgI/BiVO_4$	Precipitation-	1000	10^{6}	99.88%	[9]
CuO/BiVO ₄	photor eduction Impregnation- calcination	1000	10^{6}	100%	This work

Table S2 Slope and R² value of dynamic fitting curve

	BiVO ₄	CuO/BiVO ₄ -	CuO/BiVO ₄ -	CuO/BiVO ₄ -	CuO/BiVO ₄ -20%	
		10%	12.5%	16.7%		
k (min-1)	0.00057	0.004	0.00435	0.00306	0.00257	
\mathbb{R}^2	0.96604	0.99618	0.93699	0.99508	0.98899	

References

- [1] Y. Kanigaridou, A. Petala, Z. Frontistis, M. Antonopoulou, M. Solakidou, I. Konstantinou, D. I. Kondarides. Solar photocatalytic degradation of bisphenol A with CuO_x/BiVO₄: insights into the unexpectedly favorable effect of bicarbonates[J]. Chemical Engineering Journal, 318 (2017) 39-49.
- [2] H. Xu, H. Li, C. Wu, J. Chu, Y. Yan, H. Shu, Z. Gu, Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4[J]. Journal of Hazardous Material, 153 (1-2) (2008)877-884.

- [3] Wang Y, Long Y, Zhang D. Novel bifunctional V₂O₅/BiVO₄ nanocomposite materials with enhanced antibacterial activity[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68: 387-395.
- [4] Cho E-C, Hsiao Y-S, Huang J-H, et al. Construction of BiVO₄/Bi₂WO₆/WO₃ heterojunctions with improved photocatalytic capability in elimination of dye and antibiotics and inactivation of E. coli[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 149: 104991.
- [5] Khan A, Altaf M, Shahid M, et al. In situ solid-state fabrication of Z-Scheme BiVO₄/g-C₃N₄ heterojunction photocatalyst with highly efficient-light visible activity and their antibacterial properties against bacterial pathogens[J]. Journal of Molecular Structure, 2024, 1300: 137222.
- [6] Regmi C, Dhakal D, Lee S W. Visible-light-induced Ag/BiVO₄ semiconductor with enhanced photocatalytic and antibacterial performance[J]. Nanotechnology, 2018, 29(6): 064001.
- [7] Regmi C, Kshetri Y K, Kim T-H, et al. Visible-light-induced Fe-doped BiVO₄ photocatalyst for contaminated water treatment[J]. Molecular Catalysis, 2017, 432: 220-231.
- [8] Wang T, Cai J, Zheng J, et al. Facile synthesis of activated biochar/BiVO₄ heterojunction photocatalyst to enhance visible light efficient degradation for dye and antibiotics: applications and mechanisms[J]. Journal of Materials Research and Technology, 2022, 19: 5017-5036.
- [9] Xiang Z, Wang Y, Ju P, et al. Facile fabrication of AgI/BiVO₄ composites with enhanced visible photocatalytic degradation and antibacterial ability[J]. Journal of Alloys and Compounds, 2017, 721: 622-627.