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Results and Discussion

Mechanical Features

The mechanical performance of Rb,AlInClg and Rb,AllnBrg was assessed by computing
additional mechanical parameters and analysing their elastic characteristics using elastic
constants (ECs). The Born stability criteria are met by both HDPs, confirming their
mechanical resilience in cubic crystal structures.!> The bulk modulus (B), which gauges a
material's ability to withstand continuous compression, showed significant compressive
strength. The result was 22.36 GPa for Rb,AlInCls and 16.45 GPa for Rb,AllnBrg. Shear
modulus (G), which determines opposition to shape distortion, was found to be 7.77 GPa
for Rb,AlInClg and 6.54 GPa for Rb,AllnBrg, suggesting that Rb,AlInClg is relatively
stiffer, as depicted in Fig. S2.

Young's modulus (E), which measures a substance's strength, was 20.89 GPa for
Rb,AlInClg and 17.34 GPa for Rb,AlInBrs, suggesting that Rb,AlInClg has a higher
stiffness against mechanical stretching. For Rb,AlInClg and Rb,AllnBrg, the Poisson's ratio
(v) was found to be 0.34 and 0.32, respectively. Rb,AlInCls seems to be slightly more
compressible during transverse deformation because of its higher v. The following relations

can be used to calculate below variables:3©
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The Pugh ratio (B/G), a critical indicator of ductility, is computed as 2.87 for Rb,AlInClg
and 2.51 for Rb,AlInBrg. This study demonstrates that both compounds are ductile if the
B/G ratio surpasses 1.75. This is additionally corroborated by the Cauchy pressure (Cp)
values, which were found to be 7.47 GPa for Rb,AlInClg and 3.45 GPa for Rb,AllnBrsg.
Both compounds have ductility when their CP values are positive, whereas Rb,AlInClg
exhibits greater ductility.”® Rb,AlInCls and Rb,AllnBrg are tested for anisotropy, an
indicator for the directional sensitivity of mechanical features,’!! with computed values of
0.31 and 0.32. The compared values of mechanical features are listed in Table S1. The
greater anisotropy value for Rb,AllnBrg indicates more elasticity fluctuation depending on
the direction of applied stress. Furthermore, the melting temperature (Tm) is calculated
using the formula Tm = 553 + 592(C,; ) &+ 300.!>7'* The computed values for Rb,AlInClg
and Rb,AlInBrg are 804 + 300K and 750 + 300K, respectively. Although these values are
approximate, the observed decrease from Cl to Br is consistent with the reduction in bond

strength and elastic stiffness, indicating weaker lattice cohesion upon halide substitution.



Table S1: The calculation of elastic parameters for Rb,AllnX¢ (X = Cl, Br)

Parameters Rb,AlInCls Rb;AlInBrs Rb,NaCrClg'°

Cu 42.54 33.29 44.59
Cn 12.27 8.03 12.09
Cu 4.80 4.082 11.61

B 22.36 16.45 22.61

G 7.77 6.54 13.69

E 20.89 17.34 34.18

A 0.31 0.32 0.116

v 0.34 0.32 0.248
B/G 2.87 2.51 1.65

Cp 7.47 3.95 ~0.48

Tm (K) 804 750

Two-dimensional (2D) and three-dimensional (3D) ELATE'¢ visual representations, as
shown in Fig. S3 and Fig. S4, were developed to better show the mechanical characteristics
and computed parameters of Rb,AlInCls and Rb,AllnBrs. By showing the directional
dependency of important elastic parameters, including linear compression, E, G, and v,
these graphs offer a thorough knowledge of the materials' anisotropic behaviour. These
graphs effectively emphasize differences in elastic responses across various
crystallographic planes. These examples, which correspond to the computed values and
help to understand their mechanical nature, validate the more significant anisotropies in
both HDPs. Since both Rb,AlInCls and Rb,AllnBrg typically exhibit mechanical stability
and ductility, they are both great choices for uses requiring materials with intermediate
stiffness and ductility. The ductile behaviour of Rb,AlInCls and Rb,AllnBrg depends on the
particular application needs. In contrast to Rb,AllnBrs, Rb,AlInClg exhibits more strength
and rigidity.
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Fig. S1 Band structures and Total density of States for (a) Rb,AllnBrs and (b) Rb,AlInClg using SOC




Elastic Constants
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Fig. S2 Elastic Constants of Rb,AlInX¢ (X = Cl, Br)
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Fig. S3 2D and 3D diagram of (a) G (b) E (c) linear compressibility and (d) v of Rb,AlInClg in different planes
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Fig. S4 2D and 3D diagram of (a) G (b) E (c) linear compressibility and (d) v of Rb,AllnBrg in different planes
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