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25 Table S1. Chemical composition (mg L-1) of natural brine used in this study. Errors are the 
26 standard error of the mean, n = 3.

27

28

29

30

Parameters/Cations/Anions Natural Brines

T (°C) 28.0 ± 2.3

pH 7.2 ± 0.5

EC (mS) 20.3 ± 1.5

Silica (mg L-1) 35.0 ± 2.0

Calcium (mg L-1) 1512.0 ± 2.4

Magnesium (mg L-1) 27.2 ± 1.3

Potassium (mg L-1) 204.9 ± 3.3

Sodium (mg L-1) 2351.0 ± 3.2

Lithium (mg L-1) 75.2 ± 1.8

Boron (mg L-1) 12.8 ± 1.3

Copper (mg L-1) 2.0 ± 0.5

Iron (mg L-1) 2.5 ± 0.8

Manganese (mg L-1) 3.0 ± 0.4

Strontium (mg L-1) 29.0 ± 0.8

Nickel (mg L-1) 2.5 ± 0.9

Chloride (mg L-1) 7711.0 ± 4.5

Sulphate (mg L-1) 270.0 ± 5.5

Phosphate (mg L-1) 141.9 ± 8.7
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36 Table S2. Operating conditions of Inductive coupled plasma optical emission spectroscopy 
37 (ICP-OES) and wavelengths at which the metals were detected.
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40
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43

Wavelengths and operating conditions used for ICP-OES determination of metals.

RF power (kW) 1.2

Plasma gas flow (L min−1) 12

Auxiliary Ar (L min -1) 1.0

Nebulizer Ar (L min−1) 0.70

Pump rate (mL min−1) 1

Readings/replicate 3

Wavelength (nm)

Ca: 422.673; Mg: 285.213; Cu: 327.395; Fe: 238.204; Ni: 

230.299; Mn: 294.921; Sr: 421.552; K: 769.897; B: 249.678;  

Na: 588.995; Sr: 421.552
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56 Table S3. Operating conditions of Ion chromatography (IC) for anion detection in Natural 
57 brine.
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76

77

Operating conditions used for IC determination of anions.

Eluent KOH (mM) 30 

Operation mode Isocratic

Flow rate (mL min -1) 0.38

Suppressor (mA) 29

Column temperature (°C) 30

Pressure (psi) < 4000



78 Table S4. Operating conditions of scanning electron microscopy (SEM).
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100

Operating conditions used for SEM analysis.
Accelerating voltage (kV) 25
Working distance (mm) 20

Electron beam current (µA) 233
Magnification (X) 5 - 105

Chamber pressure (Pa) 10
Interpretation software xT microscope control 6.2.7

Operating conditions used for XRD analysis.

XRD Siemens D5000 diffractometer

X-Ray Tube 1.5kW, Cu-anode

kV & mA 40kV, 30mA

Wavelength 1.5406/1.54439 (Cu Kα1/2)

Detector Scintillation point detector

Div. Slit V6 (variable, 6mm)

AntiScatter Slit (same as above)

Scan Type θ/θ locked

Scan Range 2-70 °2θ

Step Size 0.02 °2θ

Scan time 1 sec/step

Scan Rotation Yes

Interpretation software EVA v.18.0.0.0.

PDF Database JCPDS PDF-2 (2004) database



101 Table S5. Operating conditions of X-ray diffraction analysis.
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130 Table S6. Growth performance of S. pasteurii and B. subtilis in tryptone soy broth in 
131 exponential phase, represented in terms of growth rate (h-1), doubling time (h), maximum 
132 optical density (O.D. @ 600 nm) and pH of medium. Errors are the standard error of the 
133 mean, n = 3.
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154

155

156

157

158

159

Parameters/Organisms Bacillus subtilis 
in tryptone soy broth

Sporosarcina pasteurii 
in tryptone soy broth

Growth rate (h-1) 0.69 ± 0.05 0.71 ± 0.03

Doubling time (h) 0.99 ± 0.01 0.97 ± 0.02

Maximum OD600 1.15 + 0.04 1.16 ± 0.05

Maximum pH 7.37 ± 0.06 9.60 ± 0.03



160 Table S7. Saturation indices calculated for minerals formed via MICP in the natural brine 
161 solution.

162

163

Sample Time point Calcit
e

Aragonit
e

Dolomit
e

Huntit
e

Magnesit
e

Vaterit
e

Bacillus subtilis in Natural 
brine solution 0 0.51 0.22 -0.48 -5.51 -1.76 -0.09

Bacillus subtilis in Natural 
brine solution 0.9 0.75 0.46 0.01 -4.52 -1.51 0.15

Bacillus subtilis in Natural 
brine solution 3 0.88 0.58 0.21 -4.17 -1.44 0.28

Bacillus subtilis in Natural 
brine solution 7 0.71 0.42 -0.12 -4.84 -1.61 0.31

Bacillus subtilis in Natural 
brine solution 24 0.91 0.62 0.28 -4.05 -1.41 0.31

Sporosarcina pasteurii in 
Natural brine solution 0 0.41 0.12 -0.68 -5.91 -1.86 -0.18

Sporosarcina pasteurii in 
Natural brine solution 0.9 0.92 0.63 1.41 -0.68 -0.29 0.33

Sporosarcina pasteurii in 
Natural brine solution 3 0.13 -0.16 0.32 -2.34 -0.58 -0.46

Sporosarcina pasteurii in 
Natural brine solution 7 0.03 -0.26 0.20 -2.51 -0.6 -0.56

Sporosarcina pasteurii in 
Natural brine solution 24 -0.09 -0.39 0.07 -2.65 -0.61 -0.69
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171 Table S8. Composition of different lithium-rich brines reported from literature. 

Cations/
Anions

Calcium 
(mg L-1)

Magne
sium 

(mg L-1)

Potassium 
(mg L-1)

Sodium 
(mg L-1)

Lithium 
(mg L-1)

Boron
(mg L-1)

Chloride 
(mg L-1)

Sulphate 
(mg L-1)

Uyuni
(Bolivia) 460 7680 7920 98400 320 190 177600 12960

Atacama 
(Chile) 450 9650 23600 91000 1570 440 189500 15900

Olaroz 
(Argentina) 1100 2000 5300 111500 570 NA 177500 9800

Hombre 
Muerto 
(Argentina)

120 140 9700 103000 900 540 168000 11400

Zabuye 
Lake 
(China)

0 0 45960 127900 660 1580 147600 26290

Clayton 
Valley 
(USA)

450 230 8000 63700 360 90 100000 6600

Taijinar Salt 
Lake brine 
(China)

300 13500 NA 102300 210 310 188100 24000

Southern 
Tibet 
geothermal 
belt (China)

50 20 NA 1700 130 NA 2000 1700

Chott Djerid 
(Tunisia) 1600 3400 5600 80000 60 NA 144100 6700

Cerro prieto 
(USA) 30800 3200 23500 60000 250 500 175500 46000

Salton Sea 
(USA) 25700 110 14500 49200 200 300 142000 100

Rincon 
(Argentina) 600 3000 6600 97900 300 400 158000 NA

Soultz-
sous-Forêts 
(France)

7200 130 3200 28100 170 40 58600 160

Buhl 
geothermal 
well 
(Germany)

11600 1930 490 64000 40 NA 120300 1600

De
po

si
t C

ou
nt

ry

Landau 
geothermal 
well 
(Germany)

7700 80 4000 28200 180 NA 64200 100



Dieng 
geothermal 
power plant 
(Indonesia)

400 3 2200 39 40 300 13600 3

Coipasa 
(Bolivia) NA 13600 11000 75100 350 800 151000 24600

Cauchari 
(Argentina) NA 1450 4200 93300 510 1100 148600 15700

Cu
rr

en
t 

st
ud

y Cornwall 
(United 
Kingdom)

1512 27.2 204.9 2351 75.2 12.8 7711 270

Cations/
Anions

Copper 
(mg L-1)

Iron
(mg L-1)

Manganese 
(mg L-1)

Strontium 
(mg L-1)

Nickel
(mg L-1)

Phosphat
e (mg L-1)

Silica 
(mg L-1) References

Uyuni 
(Bolivia) NA NA NA NA NA NA NA

1

Atacama 
(Chile) NA NA NA NA NA NA NA

1

Olaroz 
(Argentina) NA NA NA NA NA NA NA

2

Hombre 
Muerto 
(Argentina)

NA NA NA NA NA NA NA
1

Zabuye 
Lake 
(China)

NA NA NA NA NA NA NA
1

Clayton 
Valley 
(USA)

NA NA NA NA NA NA NA
1

Taijinar Salt 
Lake brine 
(China)

NA NA NA NA NA NA NA
3

Southern 
Tibet 
geothermal 
belt (China)

NA NA NA NA NA NA NA

3

Chott Djerid 
(Tunisia) NA NA NA NA NA NA NA

4

Cerro prieto 
(USA) NA NA NA NA NA NA NA

1

Salton Sea 
(USA) NA NA NA NA NA NA NA

5

Rincon 
(Argentina) NA NA NA NA NA NA NA

1

De
po

si
t C

ou
nt

ry

Soultz-
sous-Forêts NA NA NA NA NA NA NA

6



(France)
Buhl 
geothermal 
well 
(Germany)

NA NA NA NA NA NA NA

6

Landau 
geothermal 
well 
(Germany)

NA NA NA NA NA NA NA

6

Dieng 
geothermal 
power plant 
(Indonesia)

NA NA NA NA NA NA NA

7

Coipasa 
(Bolivia) NA NA NA NA NA NA NA

8

Cauchari 
(Argentina) NA NA NA NA NA NA NA

8

Cu
rr

en
t 

st
ud

y Cornwall 
(United 
Kingdom)

2 2.5 3 29 2.5 141.9 35 This study

172 *NA represents not assigned
173
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183

184
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189

190

191 Table S9. Comparative study reporting different methods to treat saline water samples for 
192 metal removal and Li recovery. 

Sr 
No.

Water 
samples

Method used for 
Treatment pH

Time of 
treatment 

(Hrs)

Calcium 
removal

efficiency (%)

Magnesium 
removal 

efficiency (%)

1

Artificial 
seawater 
cementation 
solution

MICP by 
Sporosarcina 

pasteurii
8.5 24 90 NA

2
Hypersaline 
produced 
water

MICP by ureolytic 
bacterial 

consortium
9 240 96 35

3

Brine from 
Hombre 
Muerto, 
Argentina

Ion Pumping NA NA NA NA

4
Brine, from 
north of 
Argentina

2 step electro 
membrane 

process
13.1 500 99.8 97

5

Brine, from 
Geothermal 
power plant, 
Tibet

Ion exchange 
resin 12 1 5 NA

6 Geothermal 
water, Tibet

Ion exchange 
resin 12 12 NA NA

7
Salt Lake 
brine from 
West Taijinar

crystallization-
precipitation 

method
6.7 3 NA 99

8
Dead sea 
evaporated 
end brine

Chemical 
precipitation 6.9 NA NA NA

9 Arizaro Salt 
Lake brine

Electrochemical 
combined woth 

precipitation
NA NA NA NA

10 This study
MICP by 

Sporosarcina 
pasteurii

9.4 0.15 96 46

Sr 
No.

Water 
samples

Manganese 
removal 

efficiency (%)

Strontium 
removal 

efficiency (%)

% Li 
recovery References

1 Artificial 
seawater NA NA NA 9



cementation 
solution

2
Hypersaline 
produced 
water

92.2 94.2 NA 10

3

Brine from 
Hombre 
Muerto, 
Argentina

NA NA 4.9 11

4
Brine, from 
north of 
Argentina

NA NA 99.8 12

5

Brine, from 
Geothermal 
power plant, 
Tibet

NA NA 88.68 13

6 Geothermal 
water, Tibet NA NA 88.42 14

7
Salt Lake 
brine from 
West Taijinar

NA NA 93.2 15

8
Dead sea 
evaporated 
end brine

NA NA 40 16

9 Arizaro Salt 
Lake brine NA NA 74.9 17

10 This study 88 91 96 This study
193 *NA represents not assigned
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(a)

(c)

(b)

(d)

205

206 Figure S1. Microbial induced carbonate precipitation in natural brine inoculated (at O.D. 0.1) 
207 with S. pasteurii (red circles) and B. subtilis (black squares). Plots show concentration of Ca 
208 (a), Li (b), Mg (c), Mn (d) and Sr (e) in the solution over time. Error bars are the standard error 
209 of the mean, n = 3.
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(a) (b)

(c) (d)

216 Figure S2. Microbial induced carbonate precipitation in natural brine inoculated (at O.D. 0.2) 
217 with S. pasteurii (red circles) and B. subtilis (black squares). Plots show concentration of Ca 
218 (a), Li (b), Mg (c), Mn (d) and Sr (e) in the solution over time. Error bars are the standard error 
219 of the mean, n = 3.
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(a) (b)

(c) (d)

228 Figure S3. Microbial induced carbonate precipitation in natural brine inoculated (at O.D. 0.3) 
229 with S. pasteurii (red circles) and B. subtilis (black squares). Plots show concentration of Ca 
230 (a), Li (b), Mg (c), Mn (d) and Sr (e) in the solution over time. Error bars are the standard error 
231 of the mean, n = 3.
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(a) (b)

(c) (d)

239 Figure S4. Microbial induced carbonate precipitation in natural brine inoculated (at O.D. 0.4) 
240 with S. pasteurii (red circles) and B. subtilis (black squares). Plots show concentration of Ca 
241 (a), Li (b), Mg (c), Mn (d) and Sr (e) in the solution over time. Error bars are the standard error 
242 of the mean, n = 3.



(e)

243
244

245

246

247

248

249

250 Fig S5 Microbial induced carbonate precipitation in natural brine inoculated with S. pasteurii 
251 (red circles) and no cell control with only urea added in natural brine (black squares). Plots 
252 show concentration of Ca (a), Mg (b), Li (c), Mn (d) Sr (e) and measured pH (f) in the 
253 solution over time. Error bars are the standard error of the mean, n = 3.
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(a)

(b)

255

256 Figure S6. Growth performance of S. pasteurii (red circle) and B. subtilis (black square) in TSB 
257 for MICP treatment. Plot show optical density measured at 600 nm in TSB medium (a), pH of 
258 TSB medium (b). Error bars are the standard error of the mean, n = 3.
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285 Figure S7. XRD analysis of powdered precipitates with S. pasteurii cells in the natural brine 
286 solution.
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306

307

308

309

310 Figure S8. Surface charge on S. pasteurii (red circle) and B. subtilis (black square). Plot 
311 shows zeta potential (mV) in TSB medium at different pH values (2-11). Error bars are the 
312 standard error of the mean, n = 3.
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336

337

338

339

340 Figure S9. Urea uptake by S. pasteurii cultivated using commercial urea (black square) and 
341 cow urine-based urea (red circle) in CaCl2 solution. Plot shows urea concentration in CaCl2 
342 solution over time. Error bars are the standard error of the mean, n = 3.
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