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25 Table S1. Chemical composition (mg L) of natural brine used in this study. Errors are the

26 standard error of the mean, n = 3.

27

28

29

30
Parameters/Cations/Anions Natural Brines
T(°C) 28.0+2.3
pH 7.2+0.5
EC (mS) 20.3+1.5
Silica (mg L?) 35.0+2.0
Calcium (mg L?) 1512.0+2.4
Magnesium (mgL?) 27.2+1.3
Potassium (mg L1) 2049+3.3
Sodium (mg L?) 2351.0+3.2
Lithium (mg L?) 75.2+1.8
Boron (mg L?) 12.8+1.3
Copper (mg L) 2.0+0.5
Iron (mg L?) 2.5+0.8
Manganese (mg L?) 3.0+04
Strontium (mg L) 29.0+0.8
Nickel (mgL?) 2.5+0.9
Chloride (mg L?) 7711.0+4.5
Sulphate (mgL?) 270.0+5.5
Phosphate (mg L?) 1419 +8.7
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36 Table S2. Operating conditions of Inductive coupled plasma optical emission spectroscopy
37 (ICP-OES) and wavelengths at which the metals were detected.

38
39
40
41
42

43

Wavelengths and operating conditions used for ICP-OES determination of metals.

RF power (kW) 1.2
Plasma gas flow (L min~?) 12
Auxiliary Ar (L min-1) 1.0
Nebulizer Ar (L min™) 0.70
Pump rate (mL min?) 1
Readings/replicate 3

Ca: 422.673; Mg: 285.213; Cu: 327.395; Fe: 238.204; Ni:
Wavelength (nm) 230.299; Mn: 294.921; Sr: 421.552; K: 769.897; B: 249.678;
Na: 588.995; Sr: 421.552

44

45

46

47

48

49

50

51

52

53

54

55



56
57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

Table S3. Operating conditions of lon chromatography (IC) for anion detection in Natural
brine.
Operating conditions used for IC determination of anions.

Eluent KOH (mM) 30

Operation mode Isocratic

Flow rate (mL min-?) 0.38

Suppressor (mA) 29

Column temperature (°C) 30

Pressure (psi) <4000
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Table S4. Operating conditions of scanning electron microscopy (SEM).

Opeyating conditions used for SEIV gngﬂxsﬁics.
Accelerating-voltage-Hev) 25

Working distanBQmm)

=

Siemens D5000 diffracﬁg‘neter

Electron beanXdaydnbeuA) 1.5kW, Cu-anogdg3
Magnificagipg, (XA 40kV, 30mA - 10°
Chamber pressure (Pa) 10
Interpretati\gﬁ‘éﬁlﬁ%y?e 1'54064%'?#@84586%0‘%6@trol 6.2.7
Detector Scintillation point detector
Div. Slit V6 (variable, 6mm)

AntiScatter Slit
Scan Type
Scan Range
Step Size
Scan time
Scan Rotation
Interpretation software

PDF Database

(same as above)
0/6 locked
2-70°20
0.02 °26
1 sec/step
Yes

EVAv.18.0.0.0.

JCPDS PDF-2 (2004) database




101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

Table S5. Operating conditions of X-ray diffraction analysis.
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Table S6. Growth performance of S. pasteurii and B. subtilis in tryptone soy broth in
exponential phase, represented in terms of growth rate (h't), doubling time (h), maximum
optical density (O.D. @ 600 nm) and pH of medium. Errors are the standard error of the

mean, n = 3.
Parameters/Organisms Bacillus subtilis Sporosarcina pasteurii
in tryptone soy broth  in tryptone soy broth
Growth rate (h?) 0.69 +0.05 0.71 £0.03
Doubling time (h) 0.99 +0.01 0.97 £0.02
Maximum ODggg 1.15+0.04 1.16 £ 0.05
Maximum pH 7.37 £0.06 9.60 £ 0.03




160 Table S7. Saturation indices calculated for minerals formed via MICP in the natural brine

161 solution.
162
163
. . Calcit Aragonit Dolomit Huntit Magnesit Vaterit
Sample Time point
e e e e e e
Bacillus subtilis in Natural 0 0.51 0.22 048 551 -1.76 -0.09
brine solution
Bacillus subtilis in Natural 0.9 0.75 0.46 0.01 -4.52 -1.51 0.15
brine solution
Bacillus subtilis in Natural 3 0.88 0.58 021 -417 -1.44 0.28
brine solution
Bacillus subtilis in Natural 7 0.71 0.42 012 -4.84 -1.61 0.31
brine solution
Bacillus subtilis in Natural 24 0.91 0.62 0.28 -4.05 -1.41 0.31
brine solution
Sporosarcina pasteurii in 0 0.41 0.12 068  -5.01 -1.86 -0.18
Natural brine solution
Sporosarcina pasteurii in 0.9 0.92 0.63 141  -0.68 -0.29 0.33
Natural brine solution
Sporosarcina pasteurii in 3 0.13 -0.16 0.32 234 -0.58 -0.46
Natural brine solution
Sporosarcina pasteurii in 7 0.03 -0.26 0.20 251 0.6 -0.56
Natural brine solution
Sporosarcina pasteurif in 24 2009  -0.39 0.07 22,65 -0.61 -0.69

Natural brine solution
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Deposit Country

171

Table S8. Composition of different lithium-rich brines reported from literature.

Cations/
Anions

Calcium
(mg L)

Magne

(mg L?)

Potassium
(mg LY)

Sodium
(mg L)

Lithium
(mgL?)

Boron
(mg L?)

Chloride
(mg L?)

Sulphate
(mg L)

Uyuni
(Bolivia)

460

7680

7920

98400

320

190

177600

12960

Atacama
(Chile)

450

9650

23600

91000

1570

440

189500

15900

Olaroz
(Argentina)

1100

2000

5300

111500

570

NA

177500

9800

Hombre
Muerto
(Argentina)

120

140

9700

103000

900

540

168000

11400

Zabuye
Lake
(China)

45960

127900

660

1580

147600

26290

Clayton
Valley
(USA)

450

230

8000

63700

360

90

100000

6600

Taijinar Salt
Lake brine
(China)

300

13500

NA

102300

210

310

188100

24000

Southern
Tibet
geothermal
belt (China)

50

20

NA

1700

130

NA

2000

1700

Chott Djerid
(Tunisia)

1600

3400

5600

80000

60

NA

144100

6700

Cerro prieto
(USA)

30800

3200

23500

60000

250

500

175500

46000

Salton Sea
(USA)

25700

110

14500

49200

200

300

142000

100

Rincon
(Argentina)

600

3000

6600

97900

300

400

158000

NA

Soultz-
sous-Foréts
(France)

7200

130

3200

28100

170

40

58600

160

Buhl
geothermal
well
(Germany)

11600

1930

490

64000

40

NA

120300

1600

Landau
geothermal
well
(Germany)

7700

80

4000

28200

180

NA

64200

100




Dieng
geothermal
power plant
(Indonesia)

400

2200

39

40

300

13600

Coipasa
(Bolivia)

NA

13600

11000

75100

350

800

151000

24600

Cauchari
(Argentina)

NA

1450

4200

93300

510

1100

148600

15700

Current
study

Cornwall
(United
Kingdom)

1512

27.2

204.9

2351

75.2

12.8

7711

270

Deposit Country

Cations/
Anions

Copper
(mgL?)

Iron
(mg L)

Manganese
(mglL?)

Strontium
(mg L)

Nickel
(mg L)

Phosphat
e (mglL?)

Silica
(mg L)

References

Uyuni
(Bolivia)

NA

NA

NA

NA

NA

NA

NA

1

Atacama
(Chile)

NA

NA

NA

NA

NA

NA

NA

Olaroz
(Argentina)

NA

NA

NA

NA

NA

NA

NA

Hombre
Muerto
(Argentina)

NA

NA

NA

NA

NA

NA

NA

Zabuye
Lake
(China)

NA

NA

NA

NA

NA

NA

NA

Clayton
Valley
(USA)

NA

NA

NA

NA

NA

NA

NA

Taijinar Salt
Lake brine
(China)

NA

NA

NA

NA

NA

NA

NA

Southern
Tibet
geothermal
belt (China)

NA

NA

NA

NA

NA

NA

NA

Chott Djerid
(Tunisia)

NA

NA

NA

NA

NA

NA

NA

Cerro prieto
(USA)

NA

NA

NA

NA

NA

NA

NA

Salton Sea
(USA)

NA

NA

NA

NA

NA

NA

NA

Rincon
(Argentina)

NA

NA

NA

NA

NA

NA

NA

Soultz-
sous-Foréts

NA

NA

NA

NA

NA

NA

NA




(France)

Buhl
geothermal
well
(Germany)

NA

NA

NA

NA

NA

NA

NA

Landau
geothermal
well
(Germany)

NA

NA

NA

NA

NA

NA

NA

Dieng
geothermal
power plant
(Indonesia)

NA

NA

NA

NA

NA

NA

NA

Coipasa
(Bolivia)

NA

NA

NA

NA

NA

NA

NA

Cauchari
(Argentina)

NA

NA

NA

NA

NA

NA

NA

Current
study

Cornwall
(United
Kingdom)

2.5

29

2.5

141.9

35

This study

172 *NA represents not assigned
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189

190

191 Table S9. Comparative study reporting different methods to treat saline water samples for

192 metal removal and Li recovery.
Sr Water Method used for Time of Calcium Magnesium
No. samples Treatment pH treatment re.moval r.'e.moval
(Hrs) efficiency (%) efficiency (%)
Artificial
seawater MICP by
1 . Sporosarcina 8.5 24 90 NA
cementation ..
. pasteurii
solution
Hypersaline MICP by ureolytic
2 produced bacterial 9 240 96 35
water consortium
Brine from
3 Hombre lon Pumping NA NA NA NA
Muerto,
Argentina
Brine, from 2 step electro
4 north of membrane 13.1 500 99.8 97
Argentina process
Brine, from
5 Geothermal lon exchange 12 1 5 NA
power plant, resin
Tibet
6 Geother.mal lon excl_wange 12 12 NA NA
water, Tibet resin
Salt Lake crystallization-
7 brine from precipitation 6.7 3 NA 99
West Taijinar method
Dead sea Chemical
8 evaporated . 6.9 NA NA NA
end brine precipitation
Arizaro Salt Electrochemical
9 . combined woth NA NA NA NA
Lake brine e
precipitation
MICP by
10 This study Sporosarcina 9.4 0.15 96 46
pasteurii
St Water Manganese Strontium % Li
No. samples re.moval re.moval recovery References
efficiency (%) efficiency (%)
1 Artificial NA NA NA 9

seawater




cementation
solution

Hypersaline
produced 92.2
water

94.2

NA

10

Brine from
Hombre
Muerto,
Argentina

NA

NA

4.9

11

Brine, from
north of NA
Argentina

NA

99.8

12

Brine, from
Geothermal
power plant,
Tibet

NA

NA

88.68

13

Geothermal
water, Tibet

NA

88.42

14

Salt Lake
brine from NA
West Taijinar

NA

93.2

15

Dead sea
evaporated NA
end brine

NA

40

16

Arizaro Salt

Lake brine NA

NA

74.9

17

10

This study 88

91

96

This study

193

194

195

196

197

198

199

200

201

202

203

204

*NA represents not assigned
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206
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209
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Figure S1. Microbial induced carbonate precipitation in natural brine inoculated (at O.D. 0.1)
with S. pasteurii (red circles) and B. subtilis (black squares). Plots show concentration of Ca
(a), Li (b), Mg (c), Mn (d) and Sr (e) in the solution over time. Error bars are the standard error
of the mean, n=3.
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Figure S2. Microbial induced carbonate precipitation in natural brine inoculated (at O.D. 0.2)
with S. pasteurii (red circles) and B. subtilis (black squares). Plots show concentration of Ca
(a), Li (b), Mg (c), Mn (d) and Sr (e) in the solution over time. Error bars are the standard error
of the mean, n=3.
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Figure S3. Microbial induced carbonate precipitation in natural brine inoculated (at O.D. 0.3)
with S. pasteurii (red circles) and B. subtilis (black squares). Plots show concentration of Ca

(a), Li (b), Mg (c), Mn (d) and Sr (e) in the solution over time. Error bars are the standard error

of the mean, n=3.
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242

Figure S4. Microbial induced carbonate precipitation in natural brine inoculated (at O.D. 0.4)
with S. pasteurii (red circles) and B. subtilis (black squares). Plots show concentration of Ca
(a), Li (b), Mg (c), Mn (d) and Sr (e) in the solution over time. Error bars are the standard error

of the mean, n=3.
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253

Fig S5 Microbial induced carbonate precipitation in natural brine inoculated with S. pasteurii
(red circles) and no cell control with only urea added in natural brine (black squares). Plots
show concentration of Ca (a), Mg (b), Li (¢), Mn (d) Sr (¢) and measured pH (f) in the
solution over time. Error bars are the standard error of the mean, n = 3.
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255

256 Figure S6. Growth performance of S. pasteurii (red circle) and B. subtilis (black square) in TSB
257 for MICP treatment. Plot show optical density measured at 600 nm in TSB medium (a), pH of
258 TSB medium (b). Error bars are the standard error of the mean, n = 3.
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285 Figure S7. XRD analysis of powdered precipitates with S. pasteurii cells in the natural brine
286 solution.
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306
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308
309

310 Figure S8. Surface charge on S. pasteurii (red circle) and B. subtilis (black square). Plot
311  shows zeta potential (mV) in TSB medium at different pH values (2-11). Error bars are the
312 standard error of the mean, n = 3.
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336
337
338
339

340 Figure S9. Urea uptake by S. pasteurii cultivated using commercial urea (black square) and
341 cow urine-based urea (red circle) in CaCl, solution. Plot shows urea concentration in CaCl,
342 solution over time. Error bars are the standard error of the mean, n = 3.
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