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1. General

1.1 General Characterization

The 'H and 3C NMR spectra were taken on a Bruker DRX 300 and a Bruker DRX 400. The high-
resolution mass spectra (HR-MS) were measured by electrospray ionization (ESI) with a micro
TOF Focus spectrometer from SYNAPT G2 (Waters, U.K.). IR spectra were observed over the
range 500-4000 cm™?, with a Thermo Scientific Nicolet iS 10 model.

1.2 Atomic Force Microscopy (AFM) Studies

Atomic force microscope (AFM) imaging was performed by using XE-100 and a PPP-NCHR 10
M cantilever (Park systems). The AFM samples were prepared by spin-coating (2000 rpm)
onto freshly cleaved Muscovite Mica, and images were recorded with the AFM operating in a
noncontact mode in the air at RT with a resolution of 1024 x 1024 pixels, using moderate scan
rates (0.3 Hz).

1.3 PL Studies

The photoluminescence (PL) spectra were recorded on a JASCO FP-8650 fluorescence
spectrophotometer. The PL spectra were measured over the range of 450-750 nm using a
quartz cell with a 2 mm path length. Scans were taken at a rate of 400 nm/min with a sampling
interval of 1 nm and a response time of 1 s. To investigate the supramolecular polymerization
process, temperature- and time-dependent PL spectral changes were monitored with an
excitation wavelength of 400 nm.

1.4 UV-vis Studies

The UV-vis spectra were recorded on a Jasco V-750 UV spectrophotometer. The UV-vis
spectra were determined over the range of 250-500 nm using a quartz cell with 2 mm path
lengths. Scans were taken at a rate of 1000 nm/min with a sampling interval of 1 nm and a
response time of 1 s. To elucidate the supramolecular polymerization process, it was heated
to 363 K (1 K/min) to form the monomeric species in UV-vis spectroscopy. Then the sample
was cooled to 293 K (1 K/min) in UV-vis spectroscopy. The time-dependent UV-vis spectral
changes were measured at 293 K.

1.5 Thermodynamic Studies

The molar fraction of aggregated molecules (a,g) at a certain temperature was calculated
from the absorbance at 564 nm in which Abs(agg) and Abs(mono) are the absorption
intensities of fully aggregated (at the lowest temperature) and purely monomeric states (at
the highest temperature), respectively, and Abs(T) is the absorption intensity at a given
temperature (T).1!

Abs(agg) — Abs(T)
a, =1-
@99 Abs(agg) — Abs(mono)

The plot of a,g versus temperature provides heating curves with non-sigmoidal (cooperative
mechanism) shapes, which were fitted using the models proposed by Meijer et al.? (for



cooperative mechanism). The standard values of enthalpy (AH®), entropy (AS°), and Gibbs free
energy (AG°) were calculated using the van’t Hoff equation. The van’t Hoff plots were
produced using an equation by a method that has been proposed in previous literature.31 The
values for the entropy change (AS) and enthalpy change (AH) as used in the cooperative
supramolecular polymerization models were obtained by fitting to the heating curves.*®
These heating curves were obtained by temperature-dependent UV-vis spectra.

1.6 Fitting of Heating Curves

Cooperative fits were performed using MATLAB R2008b software. Though the codes pertain
to one component system, we have extrapolated them to two-component systems, and the
thermodynamic parameters thus obtained are well within accepted limits.”

1.7 Preparation of Silver(l) Complexes

Pt,L! (100 uM) was dissolved in DMSO. AgNOs (1-3.0 equivalent) was dissolved in H,0. The
Pt,L! solution was added to AgNO; (1-3.0 equivalent) solution. The mixed solvent ratio was
maintained at DMSO/H,0 (3:7 v/v).

1.8 DFT Calculation

We performed density functional theory (DFT) calculations to optimize the ligands Pt,L! using
the Gaussian 09 package.? The unrestricted B3LYP functional was employed for all
optimizations and frequency calculations with 3-21G level of theory for all atoms.>11 All
calculations were performed in the gas phase.

2. Synthesis and Characterization

Unless otherwise noted, chemical reagents and solvents were purchased from commercial
suppliers (Tokyo Chemical Industry (TCl), Sigma Aldrich) and used without further purification.

2.1 Synthesis of 1

In a two-neck flask, the solution of 4-pentyn-1-ol (2.58 mL, 23.8 mmol) in acetonitrile were

added CuCl(l) (0.24 g, 2.38 mmol) and N,N,N’,N’-Tetramethylethylenediamine (TMEDA) (1.07

mL 7.13 mmol). Oxygen was bubbled in the solution and stirred for 3 h at room temperature.
After completion of reaction, the reaction mixture was filtered. The filtrate was dried under

reduced pressure. The crude material was purified by column chromatography (40% EA in

Hexane) to give a white crystalline solid 1 in 93.6% yield (1.85 g). IR (ATR): 3247, 3162, 2935,

2854, 2148, 1427, 1330, 1280, 1168, 1045, 902, 740 cm%; 'H NMR (300 MHz, CDCl5): § 3.74

(t, 4H), 2.38 (t, 4H), 1.77 (p, 4H); 3C NMR (400 MHz, CDCl5): 6 76.84, 65.63, 61.34, 30.94,

15.72; HR-Mass (m/z) calculated for C;oH140, [M]*: 166.0988, Found [M+Na]*: 189.0886.

2.2 Synthesis of 2

A Jones reagent was prepared by addition of H,SO, (3.45 mL, 64.38 mmol) in water to an
aqueous solution of chromium trioxide (4.52 g, 45.14 mmol) at 0 °C. The Jones reagent was



then added dropwise to an acetone solution of 1 (1.5 g, 9.02 mmol) and the solution was
stirred for 3 h at room temperature. The reaction mixture was quenched with 2-propanol and
insoluble solid was removed by filtration. The filtrate was dried and dissolved again in
chloroform. The crude material was filtered, washed with chloroform and diethyl ether and
dried under reduced pressure to obtain desired product and got a white solid 2 in 49.1% yield
(0.86 g). IR (ATR): 3023, 2919, 2857, 2626, 1685, 1423, 1292, 1207, 921, 775, 682 cm™*; 'H
NMR (300 MHz, DMSO-d;): 6 12.3 (s, 2H), 2.47 (d, 2H), 2.43 (t, 2H); 3C NMR (400 MHz, DMSO-
dg): 6 173.11, 77.72, 65.65, 63.29, 32.93, 32.71, 29.43, 27.40, 15.66, 14.96; HR-Mass (m/z)
calculated for Ci1gH1004 [M]*: 194.0574, Found [M+Na]*: 217.0471.

2.3 Synthesis of 3

(R)-(-)-2-amino-1-propanol (0.28 g, 3.7 mmol) was added to a stirred suspension of powdered
KOH (1.05 g, 18.7 mmol) in dry DMSO (20 mL) at 60 °C. After 30 min, 4'-chloro-2,2":6',2"-
terpyridine (1.00 g, 3.7 mmol) was added to the mixture. The mixture was then stirred for 4
h at 70 °C and poured into 600 mL of distilled water thereafter. CH,Cl, (3 x 200 mL) was used
to extract the aqueous phase. Residual water in dichloromethane was dried over Na,SO, and
CH,Cl, was removed in a vacuum, and the desired product was purified by recrystallization
with ethyl acetate to give 0.72 g (72%) of 3. Mp = 118.3 °C; IR (ATR): 3375, 2964, 2926, 2846,
1577, 1565, 1473, 1439, 1403, 1353, 1204, 799 cm*; 'H NMR (300 MHz, CDCl5): 6 8.70 (tdd, J
=4.8,1.8,0.9 Hz, 2H), 8.62 (dt, J = 8.0, 1.1 Hz, 2H), 8.02 (s, 2H), 7.84 (td, /= 7.7, 1.8 Hz, 2H),
7.33(ddd, J=7.4,4.8,1.2 Hz, 2H), 4.14 (dd, /= 9.0, 4.1 Hz, 1H), 3.94 (dd, J = 9.1, 7.6 Hz, 1H),
3.41 (dddd, /=10.6,7.6,6.6,4.2 Hz, 1H), 1.21 (d, J = 6.5 Hz, 3H); $3C NMR (125 MHz, DMSO-dp):
6 167.2, 157.1, 155.3, 149.7, 137.9, 125.0, 121.3, 107.3, 75.1, 46.2, 20.43; HR-Mass (m/z)
calculated for C;gH15N4O [M]*: 306.1475, Found [M+H]*: 307.2561.

2.4 Synthesis of 4

To a solution of 2 in DMF, was added 3, followed by addition of N-(3-dimethylaminopropyl)-
N’-ethylcarbodiimide hydrochloride (0.296 g, 1.54 mmol), 1-hydroxybenzotriazole hydrate
(0.063 g, 0.46 mmol) and sodium bicarbonate (0.104, 1.24 mmol). The resulting solution was
stirred for 2 days at room temperature under N,. After completion of reaction, the solvent
was evaporated, the residue was extracted with chloroform and brine. The organic phase was
dried with MgS0O, and dried under reduced pressure. The desired product was recrystallized
from ethyl acetate and got a pink solid 4 in 60.2% yield (0.239 g). IR (ATR): 3286, 3054, 2919,
2857,1731, 1639, 1558, 1446, 1403, 1357, 1245, 1195, 1033, 323, 867, 790, 732 cm™; 'H NMR
(300 MHz, CDCl5): & 8.68 (d, 4H), 8.58 (d, 4H), 8.00 (s, 4H), 7.84 (td, 4H), 7.33 (ddd, 4H), 4.46
(dt, 4H), 4.22 (dd, 4H), 4.16 (s, 4H), 2.52 (t, 4H), 2.30 (t, 4H), 1.33 (d, 6H); 13C NMR (400 MHz,
CDCl3): 6 170.28, 167.28, 148.72, 124.26, 121.69, 107.76, 76.14, 71.04, 66.10, 44.57, 35.02,
29.72,17.50, 15.68; HR-Mass (m/z) calculated for C4H42,NgO4 [M]*: 770.3324, Found [M+Na]*:
793.3321.

2.5 Synthesis of Pt,L!

L! (0.15048 g) was added and dried under vacuum. Methanol (20 mL) was added, and the
mixture was heated to 90°C until the solid completely dissolved. Dichloro(1,5-



cyclooctadiene)platinum(ll) (0.1459 g) was added to the solution. After completion of
reaction, the solvent was removed under reduced pressure. The crude product was purified
by recrystallization from methanol/diethyl ether to give 52.4% yield (0.632 g). IR (ATR): 3367,
3232, 3050, 2915, 2854, 2345, 2105, 1735, 1646, 1608, 1554, 1465, 1427, 1357, 1218, 1172,
1103, 1037, 867, 786, 709cm’; 'H NMR (300 MHz, DMSO-d,): 6 8.47 (d, 4H), 8.38 (m, 4H),
8.08 (s, 2H), 7.81 (t, 2H), 7.70 (m, 1H), 4.21 (s, 2H), 4.10 (d, 2H), 2.57 (d, 4H), 2.42 (d, 4H), 1.26
(m, 8H), 0.81 (m, 6H); 3C NMR (400 MHz, DMSO-d,): 6 170.82, 158.25, 155.53, 151.40,
142.75, 129.68, 126.30, 111.61, 78.33, 73.69, 66.04, 44.30, 41.29, 40.78, 40.57, 40.37, 40.16,
40.08, 39.95, 39.44, 17.47, 15.43; HR-Mass (m/z) calculated for CsgHaoNgO4Pt,Cl, [M]* :
1229.1975, Found [M+Na]*: 1252.1873.

2.6 Synthesis of Pt,L2

Pt,L2 was synthesized according to reports published previously. Spectral data were the same
as reported previously.!?

3. Supplementary Figures
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Fig. S1 AFM image and heigh profile of the SP derived from Pt,L! in a mixed DMSO and H,0 (3:7 v/v).
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Fig. S2 Fluorescence lifetime of Pt,L! (50 uM) in DMSO/H,0 (3:7 v/v).
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Fig. S3 FT-IR spectra of Pt,L! in (A) DMSO only (black line) and (B) DMSO and H,0 (3:7 v/v) (pink line).
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Fig. S4 Temperature dependent *H-NMR spectra of Pt,L! at (A) downfield (6~10 ppm) and (B) up-field (0.5~2.5
ppm) in DMSO-ds and D,0 (3:7 v/v) from 298 K to 353 K.
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Fig. S5 XRD patterns of Pt,L! in the (A) absence and (B) presence of AgNO; (2 equiv.).
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Fig. S6 Optimized (A) Pt,L! and (B) proposed molecular stacking structure of Pt,L! in supramolecular
polymerization with intermolecular hydrogen bonding and m-it Stacking.



Fig. S7 Photographs under (A) ambient light and (B) UV light about (a) Pt,L! in the presence of AgNO; (b) 1 equiv.
and (c) 2 equiv. in DMSO and H,0 (3:7 v/v).
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Fig. S8 Fluorescence lifetime about Pt,L! (100 uM) in the presence of AgNO; in DMSO and H,0 (3:7 v/v).
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Fig. S9 FT-IR spectra of Pt,L! (200 uM) in the (A) absence (red line) and (B) presence (green line) of AgNO; (2
equiv.) in DMSO and H,0 (3:7 v/v, green line).
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Figure S10. Temperature dependent *H-NMR spectra in presence of AgNO; to Pt,L! at (A) downfield (6~10 ppm)
and (B) upfield (0.5~2.5 ppm) in DMSO-d; and D,0 from 298 K to 353 K.



15

Height / nm

0 100 200 300 400 500 600
nm

Fig. S11 (A) AFM image and (B) height profile of SP based on Pt,L! (100 um) in the presence of AgNO; (2.0 equiv.)
in DMSO and H,0 (3:7 v/v).
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Fig. S12 PL spectra of (a) Pt,L! (100 um) in (b) the presence of AgNOj; (2.0 equiv.) upon addition of (c) NaCl (5.0
equiv.) in DMSO and H20 (3:7 v/v).
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Fig. S13 (A) Temperature-dependent PL spectra and (B) Plots of PL Intensity at 564 nm about Pt,L! in the
presence of AgNO; (2 equiv.) from 293 K to 343 K in DMSO/H,0 (v/v = 3:7).
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Fig. S14 PL spectra of Pt,L2 (100 uM) in the presence of AgNOs (0~3 equiv.) in DMSO/H,0 (3:7 v/v).
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Fig. S15 PL spectra of Pt,-L* (100 uM) in the presence of AgNOs (2.0 equiv.), and L3 (5.0 equiv.), recorded (a)
before and (b) after the addition of Zn(NOs), (10 equiv.) in DMSO/H,0 (3:7 v/v).
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Fig. $16 PL spectra of Pt,-L' (100 uM) in the presence of AgNOs (2.0 equiv.), L3 (5.0 equiv.), and Zn(NOs), (10
equiv.), recorded (a) before and (b) after the addition of tetramethylammonium chloride (20 equiv.) in

DMSO/H,0 (3:7 v/v).



Table S1. Thermodynamic parameters of (A) Pt,L'and in the (B) presence of AgNOs.

A B
AG (k) mol?) -25.52 -27.57
AH, (k) mol?) -65.75 -106.88
AS (k) molt K2) -137.28 -270.66
AH, (k) mol) -0.00 -0.00
Te (K) 291.71 302.77
K. (L mol?) 3.55 x 10* 8.24 x 10*
c 1 1
K, 3.55x10* 8.24 x 10*

Table S2. Luminescence lifetimes of (A) Pt,L1and in the (B) presence of AgNOs.

CHI <Tau> Taul Tau2 Tau3 Al A2 Background
A 0.986637 8.00954 1'58(2)35& 1.6461 10.186 162.043  4.15674 7

B 1.05342 9.5287 0.126375 2.54758 15.3265  53.7375  4.11215 6




4. Analytical Data
4.1 H- and 3*C-NMR Spectoscopy
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Fig. S17 'H NMR spectrum (300 MHz) of 1 in DMSO-d; at 25 °C.
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Fig. S18 13C NMR spectrum (300 MHz) of 1 in CDCl; at 25 °C.
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Fig. S20 13C NMR spectrum (300 MHz) of 2 in DMSO-d; at 25 °C.
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Fig. S21 'H NMR spectrum (300 MHz) of 3 in DMSO-d; at 25 °C.

Fig. S22 13C NMR spectrum (75 MHz) of 3 in DMSO-d; at 25 °C.
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Fig. $23 'H NMR spectrum (300 MHz) of 4 in CDCl; at 25 °C.

Fig. S24 13C NMR spectrum (300 MHz) of 4 in CDCl; at 25 °C.
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Fig. S25 'H NMR spectrum (300 MHz) of Pt,L! in DMSO-d; at 25 °C.
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Fig. $26 3C NMR spectrum (300 MHz) of Pt,L! in DMSO-d; at 25 °C.
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Fig. S27 ESI Mass spectrum of 3 in Methanol.
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Fig. S28 ESI Mass spectrum of 4 in Methanol.
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