Supplementary information

Anodic NiO nanoparticles as a high performance asymmetric supercapacitor device in hybrid electrolyte

Muhammad Danish^{1†}, Jawad Ahmad^{1,6†}, Peer Muhammad², Sofia Javed², Anwar Saeed¹, Nilem Khaliq³, Muhammad Haseem Bhatti¹, Rizwana Ghazi⁴, Asna Fatima Kiyani⁵, Habib Ullah⁶, Yi Xie⁶, Imran Shakir^{7*}, Ghafar Ali^{1*}

¹Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad 45650, Pakistan

²School of Chemical and Material Science, National University of Science and Technology (NUST) Islamabad, Pakistan

³Department of Physics, Women University Swabi, KPK, Pakistan

⁴Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan

⁵School of Chemistry, University of Edinburgh, Scotland, UK

⁶State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology,

No. 122, Luoshi Road, Wuhan 430070, China

⁷Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia

*Corresponding authors: Ghafar Ali, e-mail: ghafarali@kaist.ac.kr imranskku@gmail.com

†Both authors have equal contributions

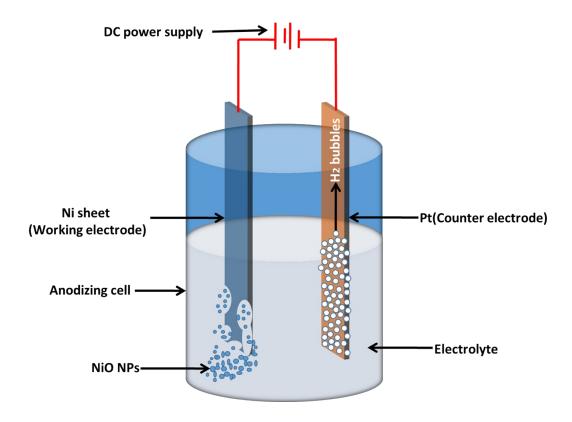


Fig. S1. The schematic diagram of the anodization process.

Fig. S2. The overall mechanism from the anodic NiO NPs production to the electrochemical measurements.

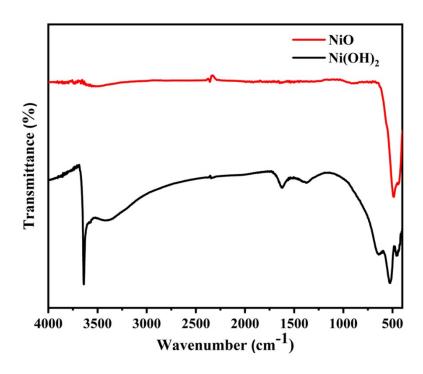
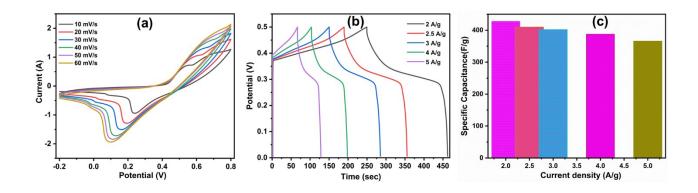



Fig. S3. FTIR spectra of Ni(OH)₂ nanoflowers and NiO NPs.

Fig. S4. Electrochemical study of Ni(OH)₂ nanoflowers in the hybrid electrolyte (a) CV of the Ni(OH)₂ nanoflowers at different scan rates, (b) GCD curves at various current densities, and (c) specific capacitance at different current densities.

Table. S1. Kinetic parameters of NiO NPs and Ni(OH)₂ nanoflowers in the hybrid electrolyte.

Material	$R_{s}(\Omega)$	$R_{ct}(\Omega)$
NiO NPs	0.8	2.3
Ni(OH)2	1.2	2.9

Table S2. Specific capacitance of the fabricated device at various current densities

Current density (A/g)	Specific capacitance (F/g)	
1.5	170	
2	163	
3	157	
4	133	
5	87	