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Table S1: Metal composition of black mass determined by ICP-OES.

Element Al Co Cu Fe Li Mn Ni
wt(%) 0.52 19.06 0.08 0.12 48.19 13.14 18.89
Material Mass (g) Yield (%) Graphite (%) NMC (%)
Black Mass 10 85 28 57

Table S2: Yield and composition of separated electrode active materials from black mass.

The total recovery rate (85%) was determined using the actual mass of black mass (10 g)
introduced into the HLCS process. The sum of the recovered anode and cathode fractions
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Figure S1: (a) TGA curves of the separated bottom and upper layers, XRD peaks of (b) pristine graphite (c) pristine NMC
(d) anode layer and (d) cathode layer after separation

correspond to 8.5 g, equivalent to 85% of the total mass input.
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Figure S2: XRD pattern for different additives added to bromoform (a) NMP (b) lonic Liquid (c) NMP/Ionic
Liquid of the anode layer (d) NMP (e) lonic Liquid (f) NMP/lonic Liquid of the cathode layer

Table S3: The average crystal sizes of NMC calculated by Scherrer equation.

Sample name Average crystal size of NMC
(nm)
Pristine NMC 622 59.2
BF NMP IL UL 53.0
BF NMP IL BL 55.6
BF NMP UL 57.7
BF NMP BL 54.7
BF IL UL 55.9
BF IL BL 59.6
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Figure S3. FTIR spectra of EMImBr, PVDF, black mass, and the products from the bottom and
upper layers. The characteristic signals of EMImBr are marked with green dashed lines, and those
of PVDF are marked with red dashed lines.

Due to the strong absorption of the black graphite and NMC powders, most functional-group
signals are significantly attenuated, making peak identification difficult even in the black mass.
Nonetheless, weak but identifiable peaks indicate that both the bottom- and upper-layer products
contain characteristic signals from the IL, suggesting strong interactions between the IL and both
NMC and graphite.

Although no clear PVDF peaks were observed in the FTIR spectra of the black mass or the upper-
layer product, a series of PVDF-related peaks were detected in the bottom-layer product. This
indicates partial removal of PVDF from graphite, which may contribute to breaking up particle
agglomerates. Given the limited spectral information, it remains challenging to elucidate the
detailed molecular mechanism solely from FTIR analysis.

However, the optical images provide more direct evidence of the IL’s role in dispersing
agglomerates. As shown in Figure S3, after stirring the black mass in either pure bromoform or a
bromoform—IL mixture, a clear difference emerges: the bromoform—IL mixture forms a distinct
interface between the upper and bottom layers, whereas pure bromoform does not. This visual
contrast supports the conclusion that the ionic liquid effectively disrupts agglomeration.
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Figure S4. Optical images of black mass in pure bromoform and in a bromoform—IL mixture.
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Figure S5: Half-cell cycling performance of anode layer after treatment.
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Figure S6: The first half-cell charge/discharge curves of pristine graphite and recovered graphite
before purification. The purity of recovered graphite is 94 wt%.

The product before purification, with a purity of 94 wt%, exhibited a much lower initial coulombic
efficiency than pristine graphite (71% vs. 92%, Figure S6).



