

1

Supplementary Information

2 One-step hydrothermal preparation of WO₃-carbon felt for 3 electrolytic recovery of copper from PCB wastewater

4

5 **Text S1** Determination of COD

6 According to the HJ/T 399–2007 standard, the chemical oxygen demand (COD) of
7 water samples was determined using the rapid digestion–spectrophotometric method.

8 A silver sulfate–sulfuric acid solution was prepared by adding 5.0 g of silver sulfate to

9 500 mL of sulfuric acid (1.84 g mL⁻¹) and stirring thoroughly. In a digestion tube, 1.00

10 mL of potassium dichromate solution (0.0833 mol L⁻¹), 0.50 mL of mercury sulfate

11 solution (0.24 g mL⁻¹), and 6.00 mL of the prepared silver sulfate–sulfuric acid solution

12 were sequentially added. The mixture was homogenized and stored at room temperature

13 in the dark as a pre-mixed reagent. Subsequently, 2.00 mL of the pre-mixed reagent

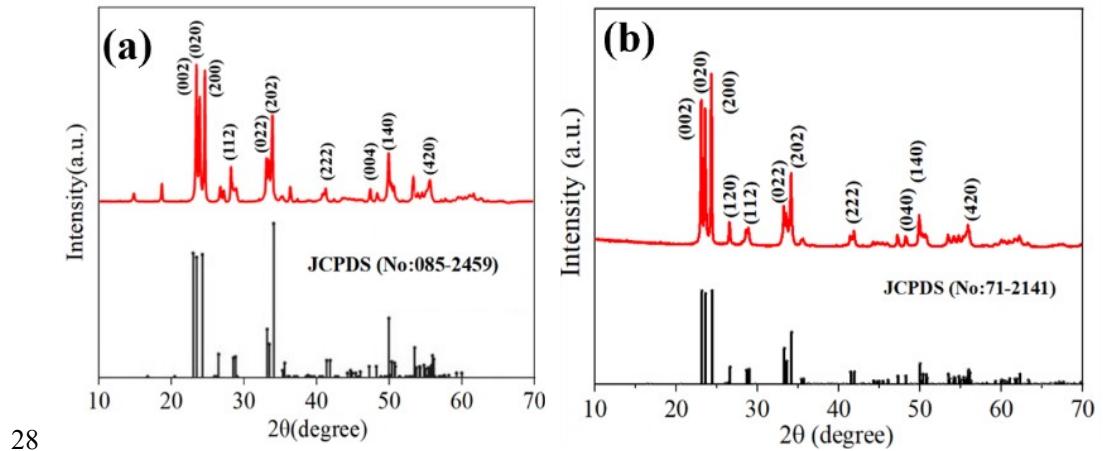
14 was added to each sample and blank, homogenized, and placed in a DRB200 digestion

15 apparatus preheated to 165 °C for 15 min. After digestion, the tubes were allowed to

16 cool to approximately 60 °C. The tubes were inverted several times while holding the

17 caps to ensure uniform distribution of the contents, and the outer surfaces were wiped

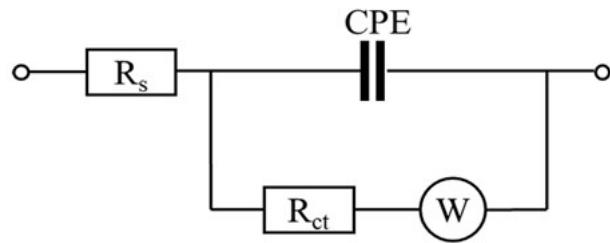
18 with lint-free paper. After cooling to room temperature, the absorbance was measured


19 at 600 ± 20 nm using water as the reference solution with a spectrophotometer. The

20 COD concentration was calculated from the calibration curve.


21 **Text S2** Simulated copper-containing wastewater formulation

22 The simulated wastewater was prepared based on the typical composition of actual


23 PCB wastewater. The formulation included copper sulfate pentahydrate ($\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$)
 24 at a dosage of 19,531 mg/L (equivalent to 5000 mg/L of Cu^{2+}), concentrated sulfuric
 25 acid (98% H_2SO_4) at 10 mL/L (resulting in a pH of approximately 0.7), glucose at 937
 26 mg/L (corresponding to a COD of 1000 mg/L), and ammonium sulfate ($(\text{NH}_4)_2\text{SO}_4$) at
 27 94.34 mg/L (providing 20 mg/L of $\text{NH}_4^+ \text{-N}$).

28 **Figure S1.** XRD spectra of (a) WO_3 powder and (b) WO_3 –carbon felt electrode.

30 **Figure S2** XPS spectra of (a-c) WO_3 powder and (d-f) WO_3 –carbon felt electrode.

32

33 **Figure S3** Equivalent circuit diagram for EIS testing.

35 **Figure S4** SEM images of copper recovered.

36