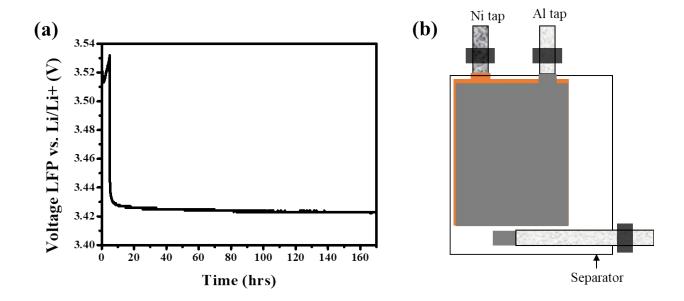
The Impact of Volume Expansion on Thermodynamic and Kinetic Properties of Graphite/Si Alloy Composite Anodes


Min-ho Lee^a, Orynbassar Mukhan^b, Carlos Tafara Mpupuni^a, Batukhan Tatykayev^{b,c}, Zhumabay Bakenov^{c,d}, and Sung Soo Kim^{a,*}

^a Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.


^b Institute of Batteries LLC, Kabanbay batyr Ave. 53, Astana, 010000, Kazakhstan

^c National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000, Kazakhstan

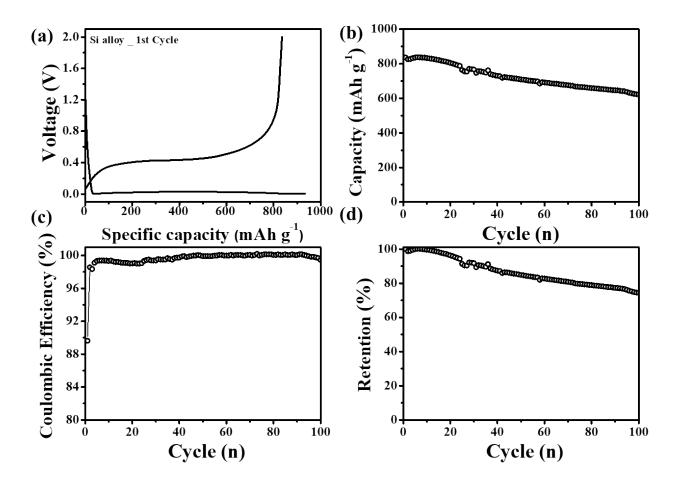

^d Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000, Kazakhstan

Fig. S1 (a) Voltage profile of the LFP electrode after charging at 0.1C for 5 h, demonstrating stable performance as a reference electrode. (b) Schematic illustration of the three-electrode pouch cell.

Fig. S2 Reproducibility test of graphite electrodes under identical conditions: (a) lithiation and (b) de-lithiation processes showing consistent potential profiles and diffusivity trends (deviation within 10 %).

Fig. S3 Electrochemical performance of the Si alloy anode. (a) initial voltage profile, (b) cycling performance, (c) coulombic efficiency, and (d) capacity retention.

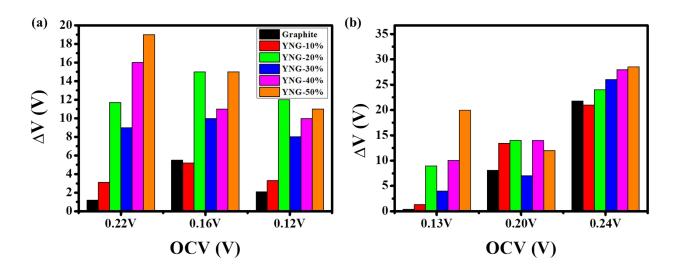
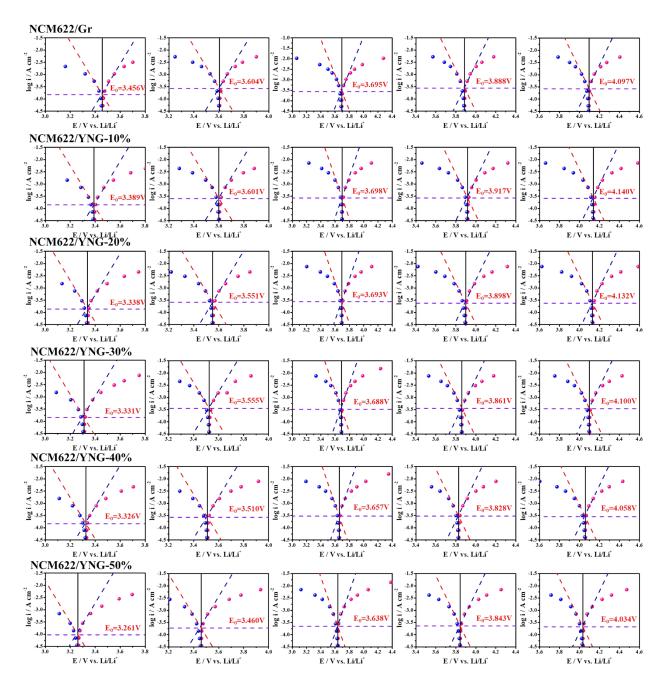
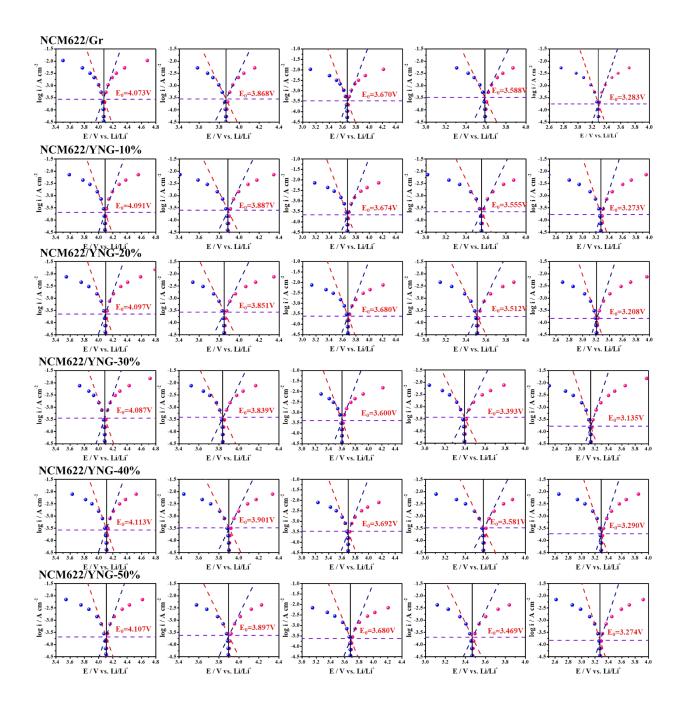




Fig. S4 ΔV as a function of OCV during (a) lithiation and (b) de-lithiation.

Fig. S5 Tafel plots of the graphite/Si alloy anode at different states of charge (SOC, from left to right: 10, 30, 50, 70, and 90 %).

Fig. S6 Tafel plots of the graphite/Si alloy anode at different depths of discharge (DOD, from left to right: 10, 30, 50, 70, and 90 %).

Table. S1 Electrode properties of graphite, and graphite/Si composite anodes.

Anode	Graphite content (wt%)	Si alloy content (wt%)	Electrode Density (g cc ⁻¹)	Mass loading (mg cm ⁻²)	Initial Thickness (μm)
Graphite	100	0	1.60	3.84	24
YNG-10%	90	10	1.68	4.20	25
YNG-20%	80	20	1.62	4.38	27
YNG-30%	70	30	1.63	4.08	25
YNG-40%	60	40	1.60	4.43	28
YNG-50%	50	50	1.58	3.96	25

Table. S2 Equivalent circuit fitting results for EIS analysis.

Anode	OCV (V)	$R_{_{\mathrm{S}}}\left(\Omega\right)$	$R_{SEI}(\Omega)$	$R_{ct}(\Omega)$
Graphite	2.71	1.63	0.90	12.4
YNG-10%	2.83	1.84	0.95	4.39
YNG-20%	2.80	1.63	1.41	1.89
YNG-30%	2.80	1.63	1.91	0.38
YNG-40%	2.81	1.52	2.23	1.85
YNG-50%	2.82	1.15	2.63	0.53

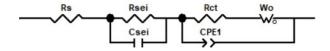


Table. S3 Parameters used for porosity calculation.

Parameter	Value	
ρ(Graphite) g cm ⁻³	2.22	
ρ(Si-alloy) g cm ⁻³	3.41	
ρ(SWCNT) g cm ⁻³	1.3	
ρ(CMC) g cm ⁻³	1.59	
ρ(SBR) g cm ⁻³	0.94	
Porosity (%) = 1 - $\frac{electrode\ density}{} \times 10$		

 $\frac{1}{theoretical\ density} \times 100$ Porosity (%) = 1