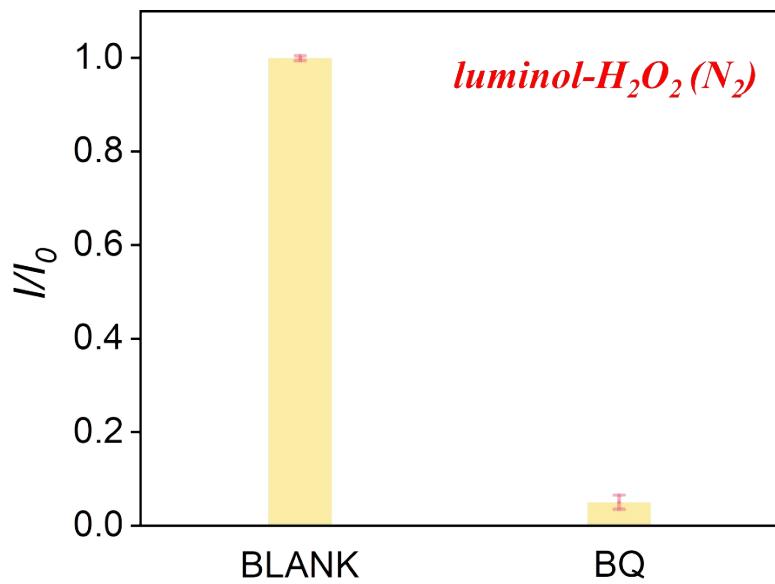

TABLE

Table S1 Detection performance of SOD by different analytical methods.


Sensing platform	Method	Detection pH	Detection range ($\mu\text{g}/\text{mL}$)	LOD (ng/mL)	Ref.
Mesoporous Pt /AuE	ECL	7.0	0.018-98	11	18
MWNT/nano-Au/GCE	ECL	-	1.6-162	8.1×10^3	71
PAAD/TiNTs/GCE	ECL	7.5	1.6-16	1.6×10^4	72
[DFIM][Tf ₂ N]- HGN/Nafion/GCE	ECL	-	0.36-4.6	140	73
DTT/Lucigenin	CL	11	1.0×10^{-2} -1.5	2.2	8
NHPI/Lucigenin	CL	11	0.01-0.25	3.0	74
NGQDs@NH ₂ -VMSF/ITO	ECL	7.4	5.0×10^{-3} -5.0	0.87	This work

Pt: Platinum; AuE: Au electrode; MWNT: multi-wall carbon nanotube; Nano-Au: Au nanoparticles; PAAD: polyamidoamine; TiNTs: titanate nanotubes; [DFIM][Tf₂N]-: 3-Decyl-1-(ferrocenylmethyl)-imidazolium bis(trifluoromethylsulfonyl) amide salts; HGN: Hydroxy-functionalized graphene; GCE: glassy carbon electrode; DTT: 1,4-Dithiothreitol; Lucigenin: N,N-dimethyl-9,9'-biacridinium dinitrate; NHPI: N-hydroxyphthalimide.

FIGURE

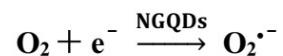


Figure S1 (A) ECL-time curve obtained on NGQDs@NH₂-VMSF/ITO electrode in luminol-DO system in absence or presence of SOD (5 $\mu\text{g}/\text{mL}$). The electrolyte in (A) was 100 μM luminol in 0.01 M PBS, pH=7.4. (B) ECL-time curve obtained on NGQDs@NH₂-VMSF/ITO electrode in luminol-H₂O₂ system (N_2 -purged) without or with SOD (5 $\mu\text{g}/\text{mL}$). The electrolyte contained 100 μM luminol and 100 μM H₂O₂ in N_2 -purged PBS (0.01 M, pH=7.4).

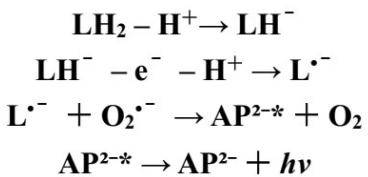
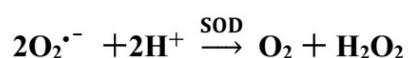


Figure S2 Changes in ECL intensity of NGQDs@NH₂-VMSF/ITO electrode in luminol-H₂O₂ system (N₂-purged) after the addition of BQ (100 μM). The electrolyte contained 100 μM luminol and 100 μM H₂O₂ in N₂-purged PBS (0.01 M, pH=7.4).


Step 1 : The production of ROS

Step 2 : ECL reaction

Step 3 :SOD reaction with O₂^{·-}

Figure S3 Mechanism of ECL process and SOD-based quenching.