

Supplementary information

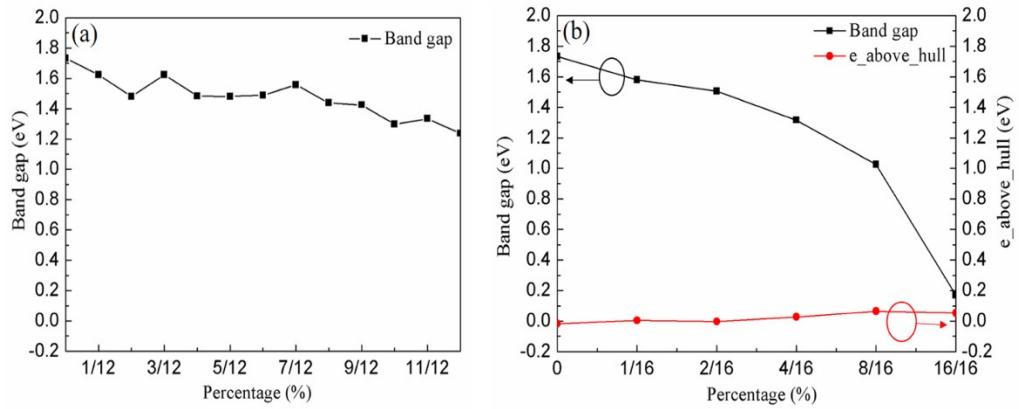
Defect and carrier characteristics of chalcogenide perovskite BaZrS_3 under thermodynamically stability: A first-principles study for photovoltaic application

Qinmiao Chen^{a,d}, Yi Ni^a and Yufei Wang^{b,c}

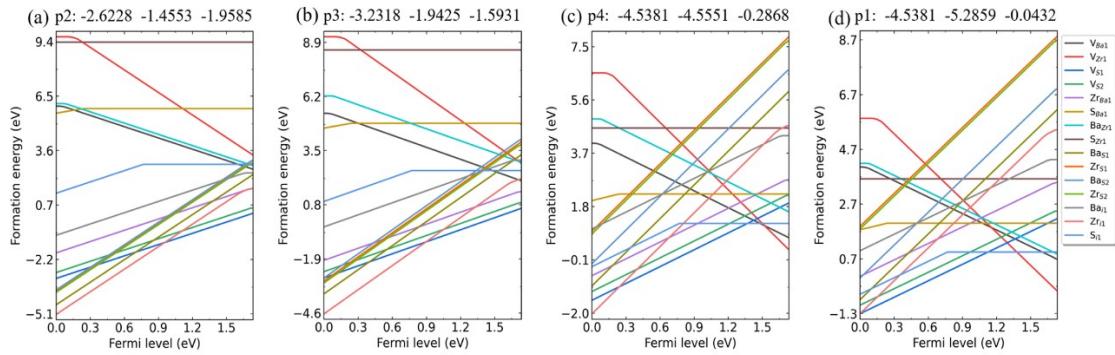
^a School of Physics, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

^b Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.

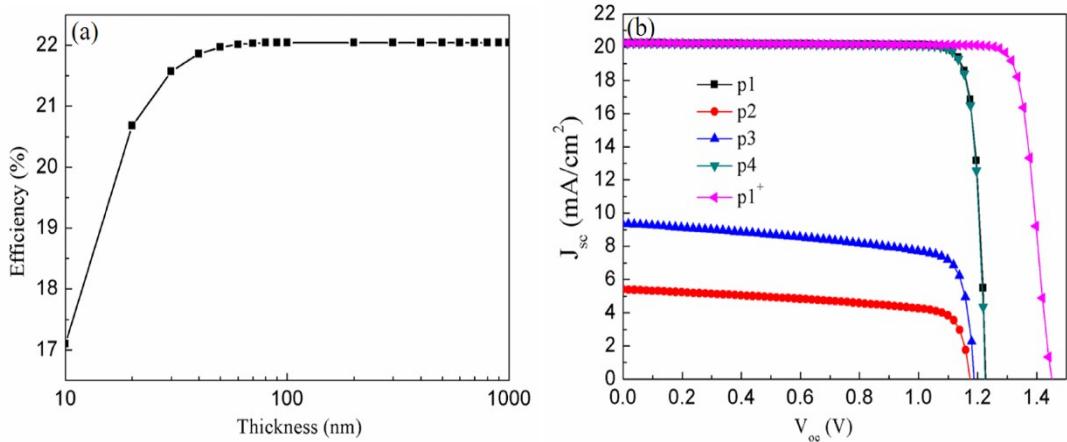
^c College of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China


^d e-mail: qmchen@ecust.edu.cn.

Optical characteristics of BaZrS_3 :


Figure S1. Calculated (a) optical absorption and (b) dielectric constant characteristics of BaZrS_3 .

Influence of element doping on the band and thermodynamically stability of BaZrS₃:


Figure S2. (a) The band gap of BaZrS₃ with the varied Se doping; (b) The band gap and $e_{\text{above_hull}}$ of BaZrS₃ with the varied Ti doping.

Formation energy of intrinsic defects in BaZrS_3 as a function of the Fermi energy:

Figure S3. The formation energy of intrinsic defects as a function of the Fermi energy in the sequence of p2-p3-p4-p1, as displayed in (a)-(b)-(c)-(d). The defect charge state determines the slope of the line, and the turning points represent the transition energy levels between different charge states for a given defect.

Photoelectric conversion characteristics of the modeled BaZrS_3 solar cell:

Figure S4. The calculated J-V characteristics of BaZrS_3 in the BaZrS_3 -PTAA junction. (a) The effect of thin-film thickness of the BaZrS_3 on its conversion efficiency; (b) the photovoltaic properties of BaZrS_3 at p2, p3, p4, p1 and p1^+ .

Table S1. The main photoelectric features of BaZrS_3 .

	p2	p3	p4	p1	p1^+
Efficiency	4.34 %	7.96%	21.96%	22.04 %	25.46%
Short-circuit current (J_{sc}, mA/cm²)	5.41	9.37	20.24	20.25	20.25
Open circuit voltage (V_{oc}, V)	1.17	1.19	1.23	1.228	1.45
Fill factor (FF, %)	68.40	71.43	88.46	88.61	86.73