

Discovering a Green Pesticide Candidate for Controlling Bac-terial Plant Disease: 1,2,3,4-Tetrahydro- β -carboline as a Poten-tial Biofilm Inhibitor

Puying Qi^{1,4*}, Hongwu Liu², Yue Li¹, Daiyu Tang³, Lei Shao¹, Junjie Wang^{1,4}, Qifei Zhu¹, Taibai Jiang¹, Lixia Li¹, Shilong Jiang¹, Fan Wu¹, Yanhong Guo¹, Yong Liu¹, Lihong Shi^{1,*}, Yin Wang^{1,*} and Jun Sun^{5,*}.

¹ Guizhou Province Engineering Research Center of Medical Resourceful Healthcare Products, College of Pharmacy, Guiyang Healthcare Vocational University, Guiyang, 550081, China.

² National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.

³ Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, China.

⁴ Guizhou Provincial Doctor Innovation Station, Southeastern Guizhou Province, 556400, China.

⁵ College of Chemistry and Chemical Engineering, Guizhou University of Engineering Science, Xueyuan Road, Qixingguan District, Bijie 551700, China. and Analytical and Testing Center, Guizhou University of Engineering Science, Xueyuan Road, Qixingguan District, Bijie 551700, China

* Correspondence: qipuying000@163.com or qipuying@gyhvu.edu.cn (P.Q.); shilihong@zju.edu.cn (L.S.); ada_wy@126.com (Y.W.); sun-jun@gues.edu.cn (J.S.)

Table S1. ADMETlab assessment.

1. Physicochemical Property

Property	Value	Comment
Molecular Weight	174.12	Contain hydrogen atoms. Optimal:100~600
Volume	187.227	Van der Waals volume
Density	0.93	Density = MW / Volume
nHA	2	Number of hydrogen bond acceptors. Optimal:0~12
nHD	2	Number of hydrogen bond donors. Optimal:0~7
nRot	0	Number of rotatable bonds. Optimal:0~11

nRing	3	Number of rings. Optimal:0~6
MaxRing	13	Number of atoms in the biggest ring. Optimal:0~18
nHet	2	Number of heteroatoms. Optimal:1~15
fChar	0	Formal charge. Optimal:-4 ~4
nRig	15	Number of rigid bonds. Optimal:0~30
Flexibility	0.0	Flexibility = nRot /nRig
Stereo Centers	2	Optimal: \square 2
TPSA	24.06	Topological Polar Surface Area. Optimal:0~140
logS	-1.673	Log of the aqueous solubility. Optimal: -4~0.5 log mol/L
logP	1.226	Log of the octanol/water partition coefficient. Optimal: 0~3
logD	1.414	logP at physiological pH 7.4. Optimal: 1~3

2. Medicinal Chemistry

Property	Value	Decision	Comment
QED	0.623	●	<ul style="list-style-type: none"> ■ A measure of drug-likeness based on the concept of desirability; ■ Attractive: > 0.67; unattractive: 0.49~0.67; too complex: < 0.34
SAscore	3.196	●	<ul style="list-style-type: none"> ■ Synthetic accessibility score is designed to estimate ease of synthesis of drug-like molecules. ■ SAscore \square 6, difficult to synthesize; SAscore <6, easy to synthesize
Fsp3	0.455	●	<ul style="list-style-type: none"> ■ The number of sp³ hybridized carbons / total carbon count, correlating with melting point and solubility. ■ Fsp³ \square 0.42 is considered a suitable value.
MCE-18	47.125	●	<ul style="list-style-type: none"> ■ MCE-18 stands for medicinal chemistry evolution. ■ MCE-18 \square 45 is considered a suitable value.
NPscore	0.653	-	<ul style="list-style-type: none"> ■ Natural product-likeness score. ■ This score is typically in the range from \square 5 to 5. The higher the score is, the higher the probability is that the molecule is a NP.
Lipinski Rule	Accepted	●	<ul style="list-style-type: none"> ■ MW \square 500; logP \square 5; Hacc \square 10; Hdon \square 5 ■ If two properties are out of range, a poor absorption or permeability is possible, one is acceptable.
Pfizer Rule	Accepted	●	<ul style="list-style-type: none"> logP > 3; TPSA < 75 Compounds with a high log P (>3) and low TPSA (<75) are likely to be toxic.
GSK Rule	Accepted	●	<ul style="list-style-type: none"> ■ MW \square 400; logP \square 4 ■ Compounds satisfying the GSK rule may have a more favorable ADMET profile
Golden Triangle	Rejected	●	<ul style="list-style-type: none"> ■ 200 \square MW \square 50; -2 \square logD \square 5 ■ Compounds satisfying the Golden Triangle rule may have a more favorable ADMET profile.

PAINS	0 alerts	-	Pan Assay Interference Compounds, frequent hitters, Alpha-screen artifacts and reactive compound.
ALAR M NMR	0 alerts	-	Thiol reactive compounds.
BMS	0 alerts	-	Undesirable, reactive compounds.
Chelator Rule	0 alerts	-	Chelating compounds.

3. Absorption

Property	Value	Decision	Comment
Caco-2 Permeability	-4.987	●	Optimal: higher than -5.15 Log unit
MDCK Permeability	6e-06	●	■ low permeability: $< 2 \times 10^{-6}$ cm/s ■ medium permeability: $2-20 \times 10^{-6}$ cm/s ■ high passive permeability: $> 20 \times 10^{-6}$ cm/s
Pgp-inhibitor	0.0	●	■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being Pgp-inhibitor
Pgp-substrate	0.293	●	■ Category 1: substrate; Category 0: Non-substrate; ■ The output value is the probability of being Pgp-substrate
HIA	0.012	●	■ Human Intestinal Absorption ■ Category 1: HIA+ (HIA < 30%); Category 0: HIA- (HIA < 30%); The output value is the probability of being HIA+
$F_{20\%}$	0.027	●	■ 20% Bioavailability ■ Category 1: $F_{20\%}^+$ (bioavailability < 20%); Category 0: $F_{20\%}^-$ (bioavailability \geq 20%); The output value is the probability of being $F_{20\%}^+$
$F_{30\%}$	0.024	●	■ 30% Bioavailability ■ Category 1: $F_{30\%}^+$ (bioavailability < 30%); Category 0: $F_{30\%}^-$ (bioavailability \geq 30%); The output value is the probability of being $F_{30\%}^+$

4. Distribution

Property	Value	Decision	Comment
PPB	21.79%	●	■ Plasma Protein Binding ■ Optimal: < 90%. Drugs with high protein-bound may have a low therapeutic index.
VD	3.381	●	■ Volume Distribution ■ Optimal: 0.04-20L/kg
BBB Penetration	0.868	●	■ Blood-Brain Barrier Penetration ■ Category 1: BBB+; Category 0: BBB-; The output value is the probability of being BBB+
Fu	66.67%	●	■ The fraction unbound in plasmas ■ Low: <5%; Middle: 5-20%; High: > 20%

5. Metabolism

Property	Value	Comment
CYP1A2 inhibitor	0.103	<ul style="list-style-type: none"> ■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.
CYP1A2 substrate	0.219	<ul style="list-style-type: none"> ■ Category 1: Substrate; Category 0: Non-substrate; ■ The output value is the probability of being substrate.
CYP2C19 inhibitor	0.065	<ul style="list-style-type: none"> ■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.
CYP2C19 substrate	0.884	<ul style="list-style-type: none"> ■ Category 1: Substrate; Category 0: Non-substrate; ■ The output value is the probability of being substrate.
CYP2C9 inhibitor	0.011	<ul style="list-style-type: none"> ■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.
CYP2C9 substrate	0.192	<ul style="list-style-type: none"> ■ Category 1: Substrate; Category 0: Non-substrate; ■ The output value is the probability of being substrate.
CYP2D6 inhibitor	0.422	<ul style="list-style-type: none"> ■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.
CYP2D6 substrate	0.871	<ul style="list-style-type: none"> ■ Category 1: Substrate; Category 0: Non-substrate; ■ The output value is the probability of being substrate.
CYP3A4 inhibitor	0.068	<ul style="list-style-type: none"> ■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.
CYP3A4 substrate	0.367	<ul style="list-style-type: none"> ■ Category 1: Substrate; Category 0: Non-substrate; ■ The output value is the probability of being substrate.

6. Excretion

Property	Value	Decision	Comment
CL	9.98	●	<ul style="list-style-type: none"> ■ Clearance ■ High: >15 mL/min/kg; moderate: 5-15 mL/min/kg; low: <5 mL/min/kg
T _{1/2}	0.386	-	<ul style="list-style-type: none"> ■ Category 1: long half-life ; Category 0: short half-life; ■ long half-life: >3h; short half-life: <3h ■ The output value is the probability of having long half-life.

7. Toxicity

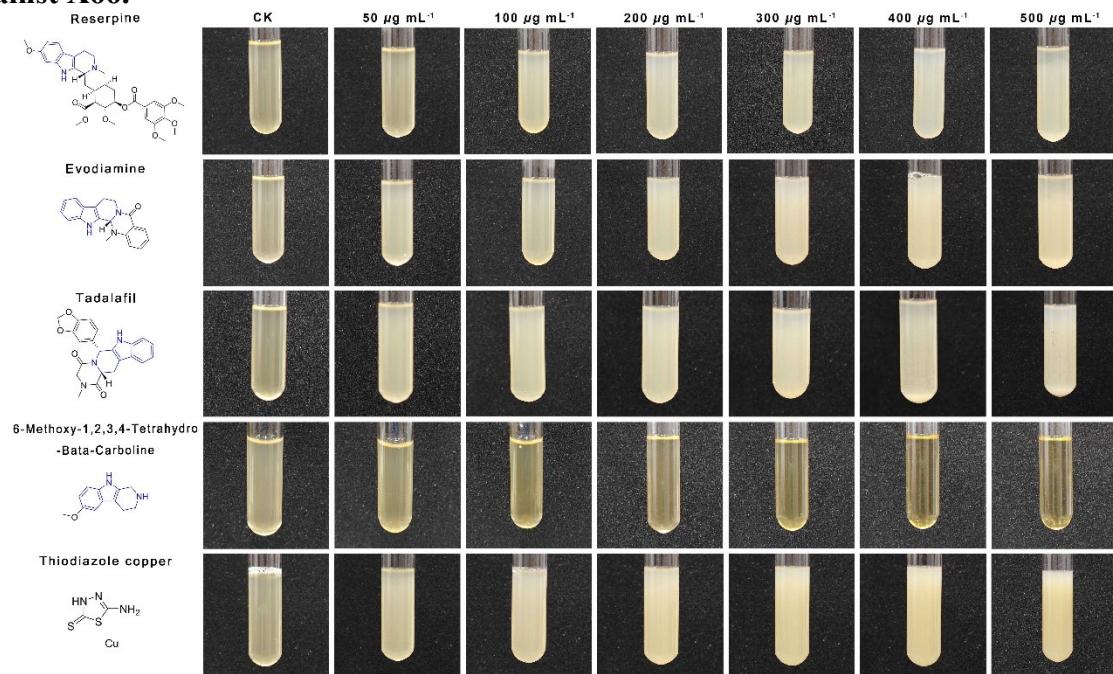
Property	Value	Decision	Comment
hERG Blockers	0.177	●	<ul style="list-style-type: none"> ■ Category 1: active; Category 0: inactive; ■ The output value is the probability of being active.
H-HT	0.652	●	<ul style="list-style-type: none"> ■ Human Hepatotoxicity ■ Category 1: H-HT positive(+); Category 0: H-HT negative(-); ■ The output value is the probability of being toxic.
DILI	0.044	●	<ul style="list-style-type: none"> ■ Drug Induced Liver Injury. ■ Category 1: drugs with a high risk of DILI; Category 0: drugs with no risk of DILI. The output value is the probability of being toxic.
AMES Toxicity	0.918	●	<ul style="list-style-type: none"> ■ Category 1: Ames positive(+); Category 0: Ames negative(-); ■ The output value is the probability of being toxic.
Rat Oral Acute Toxicity	0.825	●	<ul style="list-style-type: none"> ■ Category 0: low-toxicity; Category 1: high-toxicity; ■ The output value is the probability of being highly toxic.
FDAMDD	0.854	●	<ul style="list-style-type: none"> ■ Maximum Recommended Daily Dose ■ Category 1: FDAMDD (+); Category 0: FDAMDD (-) ■ The output value is the probability of being positive.
Skin Sensitization	0.618	●	<ul style="list-style-type: none"> ■ Category 1: Sensitizer; Category 0: Non-sensitizer; ■ The output value is the probability of being sensitizer.
Carcinogenicity	0.09	●	<ul style="list-style-type: none"> ■ Category 1: carcinogens; Category 0: non-carcinogens; ■ The output value is the probability of being toxic.
Eye Corrosion	0.005	●	<ul style="list-style-type: none"> ■ Category 1: corrosives ; Category 0: noncorrosives ■ The output value is the probability of being corrosives.
Eye Irritation	0.037	●	<ul style="list-style-type: none"> ■ Category 1: irritants ; Category 0: nonirritants ■ The output value is the probability of being irritants.
Respiratory Toxicity	0.975	●	<ul style="list-style-type: none"> ■ Category 1: respiratory toxicants; Category 0: respiratory nontoxicants ■ The output value is the probability of being toxic.

ADMETlab 2.0

8. Environmental toxicity

Property	Value	Comment
Bioconcentration Factors	0.511	<ul style="list-style-type: none"> ■ Bioconcentration factors are used for considering secondary poisoning potential and assessing risks to human health via the food chain. ■ The unit is $\log_{10}[(\text{mg/L})/(1000*\text{MW})]$
IGC ₅₀	2.987	<ul style="list-style-type: none"> ■ Tetrahymena pyriformis 50 percent growth inhibition concentration ■ The unit is $\log_{10}[(\text{mg/L})/(1000*\text{MW})]$
LC ₅₀ FM	3.056	<ul style="list-style-type: none"> ■ 96-hour fathead minnow 50 percent lethal concentration ■ The unit is $\log_{10}[(\text{mg/L})/(1000*\text{MW})]$
LC ₅₀ DM	4.875	<ul style="list-style-type: none"> ■ 48-hour daphnia magna 50 percent lethal concentration ■ The unit is $\log_{10}[(\text{mg/L})/(1000*\text{MW})]$

9. Tox21 pathway


Property	Value	Decision	Comment
NR-AR	0.004	•	<ul style="list-style-type: none"> ■ Androgen receptor ■ Category 1: actives ; Category 0: inactives; ■ The output value is the probability of being active.
NR-AR-LBD	0.002	•	<ul style="list-style-type: none"> ■ Androgen receptor ligand-binding domain ■ Category 1: actives ; Category 0: inactives; ■ The output value is the probability of being active.
NR-AhR	0.224	•	<ul style="list-style-type: none"> ■ Aryl hydrocarbon receptor ■ Category 1: actives ; Category 0: inactives; ■ The output value is the probability of being active.
NR-Aromatase	0.004	•	<ul style="list-style-type: none"> ■ Category 1: actives ; Category 0: inactives; ■ The output value is the probability of being active.
NR-ER	0.081	•	<ul style="list-style-type: none"> ■ Estrogen receptor ■ Category 1: actives ; Category 0: inactives; ■ The output value is the probability of being active.
NR-ER-LBD	0.007	•	<ul style="list-style-type: none"> ■ Estrogen receptor ligand-binding domain ■ Category 1: actives ; Category 0: inactives; ■ The output value is the probability of being active.
NR-PPAR-gamma	0.002	•	<ul style="list-style-type: none"> ■ Peroxisome proliferator-activated receptor gamma ■ Category 1: actives ; Category 0: inactives; ■ The output value is the probability of being active.
SR-ARE	0.067	•	<ul style="list-style-type: none"> ■ Antioxidant response element ■ Category 1: actives ; Category 0: inactives; ■ The output value is the probability of being active.
SR-ATAD5	0.017	•	<ul style="list-style-type: none"> ■ ATPase family AAA domain-containing protein 5 ■ Category 1: actives ; Category 0: inactives; ■ The output value is the probability of being active.
SR-HSE	0.241	•	<ul style="list-style-type: none"> ■ Heat shock factor response element ■ Category 1: actives ; Category 0: inactives; ■ The output value is the probability of being active.
SR-MMP	0.02	•	<ul style="list-style-type: none"> ■ Mitochondrial membrane potential ■ Category 1: actives ; Category 0: inactives; ■ The output value is the probability of being active.

SR-p53	0.012	●	■ Category 1: actives ; Category 0: inactives; ■ The output value is the probability of being active.
--------	-------	---	--

10. Toxicophore Rules

Property	Value	Comment
Acute Toxicity Rule	0 alerts	■ 20 substructures ■ acute toxicity during oral administration
Genotoxic Carcinogenicity Rule	1 alerts	■ 117 substructures ■ carcinogenicity or mutagenicity
NonGenotoxic Carcinogenicity Rule	0 alerts	■ 23 substructures ■ carcinogenicity through nongenotoxic mechanisms
Skin Sensitization Rule	3 alerts	■ 155 substructures ■ skin irritation
Aquatic Toxicity Rule	1 alerts	■ 99 substructures ■ toxicity to liquid(water)
NonBiodegradable Rule	0 alerts	■ 19 substructures ■ non-biodegradable
SureChEMBL Rule	0 alerts	■ 164 substructures ■ MedChem unfriendly status

Figure S1. The antibacterial activity of four THC analogues and thiodiazole-copper against Xoo.

