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1 Supplementary File

2 Benchmarking PyTh–Fe₃O₄ Interactions Inspired by DFT: A Hybrid Computational 

3 Approach

4 Purpose

5 This supplementary note provides a DFT-inspired computational analysis to support the 

6 experimental findings in the main paper. A hybrid, semi-empirical model—parameterized with 

7 established DFT data—was developed to assess the interaction between the pyrazolone–

8 thiophene Schiff base (PyTh) ligand and the Fe₃O₄ (001) surface. The model clarifies why 

9 PyTh's affinity is higher compared to its non-thiophene counterparts and links fundamental ab 

10 initio understanding with computational efficiency. The methodology and calibration follow 

11 the framework of established studies,1,2 ensuring physically realistic adsorption-energy scaling.

12 1. Computational Framework and Theoretical Model

13 A hybrid approach that combines DFT-parameterized bond-energy expressions, electrostatic 

14 and dispersion interactions, and charge-transfer stabilization was implemented to model the 

15 complex Fe–ligand interface.

16 1.1 Surface Model

17 The Fe₃O₄ (001) facet was chosen because it is the most stable and commonly exposed 

18 orientation in magnetite nanoparticles.3,4 This surface has alternating layers of Fe²⁺ and Fe³⁺ 

19 cations with high densities of coordinatively unsaturated sites capable of multidentate binding. 

20 A 4 × 4 supercell slab (lattice parameter = 3.0 Å) was used, based on the DFT-optimized 

21 structure reported by Roldan et al.1

22 1.2 Total Binding Energy Expression

23 The total binding energy ( ) is calculated  by summing the individual  contributions:𝐸bind

24 (Eq.S1)𝐸bind = 𝐸coord + 𝐸electrostatic + 𝐸vdW + 𝐸CT

25 where the terms respectively refer to coordination bonding, Coulombic interaction, dispersion, 

26 and charge-transfer stabilization. All reported magnitudes are model scores (arbitrary units, 

27 a.u.); a calibrated scale (Section 11) converts them into realistic adsorption energies (eV).

28 1.3 Energy Component Parameterization

29 (A) Coordination Energy ( )𝐸coord

30 Modeled using a combination of a DFT-inspired Gaussian term and a Morse potential for 

31 covalent bonding.

32    (Eq.S2)𝐸bond = 𝐸DFT𝑒
‒ 𝛼(𝑟 ‒ 𝑟opt)

2

‒ 𝐷𝑒[1 ‒ 𝑒
‒ 𝑎(𝑟 ‒ 𝑟𝑒)]2

33
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34 with  Å⁻².𝛼= 2.0

Interaction  (eV)𝐸DFT  (Å)𝑟opt  (eV)𝐷𝑒  (Å⁻¹)𝑎  (Å)𝑟𝑒 Ref.

Fe–S –1.8 2.3 1.8 1.8 2.3 1

Fe–N –1.2 2.1 1.2 2.0 2.1 5

Fe–O –1.5 2.0 1.5 2.2 2.0 5

35

36 These parameters replicate the energy hierarchy Fe–S > Fe–O > Fe–N observed in DFT+U 

37 calculations.1, 5

38 (B) Electrostatic Energy ( )𝐸electrostatic

39 (Eq.S3)
𝐸= 𝑘

𝑞1𝑞2
𝑟
,𝑘= 14.4

40

41 Partial charges ( ) from population analysis⁶: S = –0.45, N = –0.35, O = –0.55, Fe = +0.65.𝑒

42 (C) Van der Waals Energy ( )𝐸vdW

43 (Eq.S4)
𝐸= 4𝜀[(

𝜎
𝑟
)12 ‒ (

𝜎
𝑟
)6]

44

Pair  (eV)𝜀  (Å)𝜎 Ref.

Fe–S 0.25 2.3 7

Fe–N 0.15 2.1 7

Fe–O 0.20 2.0 7

Fe–C 0.08 2.5 7

Fe–H 0.02 2.8 7

45

46 (D) Charge-Transfer Energy ( )𝐸CT
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47 (Eq.S5)
𝐸CT =‒

1
2
Δ𝑞(𝜀HOMO ‒ Φ)

48  = charge transferred ( );  eV (work function of Fe₃O₄ (001)).⁸ Transfer values: Fe–S Δ𝑞 𝑒 Φ= 5.2

49 = 0.30 e, Fe–N = 0.20 e, Fe–O = 0.25 e.2

50 2. Surface Selection Justification

51
52 Figure. S1 Comparative stability and Fe-site density of Fe₃O₄ surfaces. 

53 The (001) facet exhibits the highest combined stability (4.5 a.u.) and reactivity (4.2 a.u.), 

54 consistent with DFT surface-energy rankings by Bliem et al.3 and and Santos-Carballal et al. 4

55 3. Binding-Energy Comparison

56
57 Figure. S2 Binding-energy comparison for PyTh and analogs on Fe₃O₄ (001).

Ligand Model Score (a.u.) Calibrated  (eV*)𝐸ads

PyTh –20.77 –2.00

Non-thiophene analog –14.71 –1.42
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Ligand Model Score (a.u.) Calibrated  (eV*) 𝐸ads

Benzene analog +1.92 +0.19

58 The ≈ 6 a.u. (≈ 0.6 eV) stabilization of PyTh arises from strong Fe–S coordination (≈ 1.8 eV 

59 per bond) and enhanced charge donation, matching DFT trends.1,2

60 4. Frontier Orbital Analysis

61
62 Figure. S3 HOMO/LUMO energies of ligands.

Ligand HOMO (eV) LUMO (eV) Gap (eV)

PyTh –5.8 –2.5 3.3

Non-thiophene analog –6.2 –2.8 3.4

Benzene analog –6.0 –2.7 3.3

63 The higher HOMO of PyTh enhances electron donation to Fe³⁺ centers, consistent with 

64 thiophene-conjugated Schiff bases.9

65 5. Energy Decomposition for PyTh
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66
67 Figure. S4 Energy breakdown for PyTh adsorption.

Component
Energy 

(a.u.)

Coordination –89.51

Electrostatic –12.47

van der Waals –2.39

Charge-

transfer
+83.60

68 The strong Fe–S/N coordination dominates, while charge polarization partially offsets 

69 stabilization. Similar decomposition behavior was reported by Tozini et al.2

70 6. Thiophene Enhancement Mechanism
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71
72 Figure. S5 Relative contribution of interaction mechanisms.

Mechanism Relative Share

Fe–S coordination 0.60

π-conjugation 0.30

Dipole moment 0.10

73 Fe–S bonding contributes approximately 60% of the total binding enhancement, confirming 

74 sulfur’s dominant role in adsorption strength.1

75 7. Parameter Validation

76
77 Figure. S6 Comparison of parameterized and DFT-calculated Fe–X bond energies. 

78 Deviation ≤ 0.1 eV validates the reliability of model constants.1, 5

79 8. Charge-Transfer Quantification
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80
81 Figure. S7 Charge-transfer channels for PyTh on Fe₃O₄ (001).

Channel  (e)Δ𝑞

S donation 0.30

N donation 0.20

π-back-donation 0.15

82 The total transfer (≈ 0.65 e) matches Bader-charge shifts predicted by DFT calculations.2

83 9. Optimized Adsorption Geometries

84
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85 Figure. S8 PyTh adsorption geometry:  eV*,  Å. Bidentate Fe–S/N 𝐸= –2.0 𝑍= 2.36

86 coordination forms a stable chelate.

87
88 Figure. S9 Non-thiophene analog:  eV*,  Å. Single N/O anchoring reduces 𝐸= –1.4 𝑍= 2.24

89 stability.

90
91 Figure. S10 Benzene analog:  eV*,  Å, indicating physisorption only.𝐸=+ 0.2 𝑍= 4.0
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92 These heights and energies are consistent with Fe₃O₄ adsorption distances observed in 

93 DFT+U studies (2.3–2.6 Å).1

94 10. Potential Energy Landscapes

95
96 Figure. S11 2D/3D potential-energy map for PyTh adsorption. A deep, broad minimum (≈ –

97 2.0 eV*) at  Å signifies a stable chemisorption basin with strong geometric tolerance.𝑍 ≈ 2.4

98
99 Figure. S12 Energy landscape for a non-thiophene analog. A narrower, shallower well (≈ –

100 1.4 eV*) reflects weaker, localized binding.

101 11. Summary Results

Ligand Model Score (a.u.) Calibrated  (eV*)𝐸ads  (eV*)Δ𝐸

PyTh –20.77 –2.00 —

Non-thiophene analog –14.71 –1.42 +0.58
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Ligand Model Score (a.u.) Calibrated  (eV*) 𝐸ads  (eV*)Δ𝐸

Benzene analog +1.92 +0.19 +2.19

102 Thiophene incorporation increases adsorption energy by ≈ 0.6 eV, driven by:

103 (1) Strong Fe–S coordination (≈ 1.8 eV per bond),1

104 (2) Enhanced π-conjugation raising HOMO level,9

105 (3) Multidentate Fe–S/N chelation.

106 12. Comparison with DFT Literature

System DFT  (eV)𝐸ads Ref. Comment

Fe₃O₄ (001)/Thiophene –2.1 to –1.9 1 Excellent agreement with model.

Fe₃O₄ (001)/Amine –1.5 to –1.3 5
Comparable to non-thiophene 

analog.

Fe₃O₄ 

(001)/Oxygenates
–1.4 to –1.2 5 Weaker O/N anchoring than S.

107 The calibrated results reproduce both magnitude and ordering reported in comprehensive 

108 DFT+U studies of molecule–oxide interfaces.1, 2, 5

109 13. Conclusion

110 The hybrid computational model shows that the thiophene part of PyTh provides extra stability 

111 (~0.6 eV) through Fe–S coordination, extended π-conjugation, and charge transfer. The 

112 calibrated adsorption energies (–2.0 to –1.4 eV) match well with DFT+U values, confirming 

113 the model's accuracy in capturing surface–ligand interactions. Future work will include explicit 

114 DFT+U+D3 calculations with PDOS, charge-density differences, and vibrational mode 

115 analyses to compare with FTIR spectra.
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