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As per the provided synthetic route, the E-3-arylidene-chroman-4-ones shown below were

prepared.

Entry Chromanochalcones

Isolated Melting Point
Yield (%) (°C)

O
L
0 OMe 80 120-122

E-3-(4-methoxybenzylidene)-2,3-dihydro-6-
methylchromen-4-one; Yellowish white solid

O
(6] OMe 75 132-134

E-3-(3,4-dimethoxybenzylidene)-2,3-dihydro-6-
methylchromen-4-one; Orange solid
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O
P8R
3. e} (0]
E-3-((benzo[d][1,3]dioxol-5-yl)methylene)-2,3-
dihydro-6-methylchromen-4-one; Light brown solid

78

128-130

o

e
O OMe

E-3-(4-methoxybenzylidene)-2,3-dihydrochromen-
4-one; Yellowish white solid

N

82

112-114

O
l = l OMe
5. (] OMe
E-3-(3,4-dimethoxybenzylidene)-2,3-
dihydrochromen-4-one; Orange solid

86

124-126

0]

_ o)
L) ULy
6. e} O

E-3-((benzo[d][1,3]dioxol-5-yl)methylene)-2,3-
dihydrochromen-4-one; Yellow solid

80

120-122

0]

=

J

\
7. o) S

E-2,3-dihydro-3-((thiophen-3-
yl)methylene)chromen-4-one; Yellow solid

78

128-130

0]

OMe
Ly o
8. 1)

E-3-(2-methoxybenzylidene)-2,3-dihydro-6-
methylchromen-4-one; Light brown solid

94

138-140

(0]

l = l OMe
9. ()

E-3-(3-methoxybenzylidene)-2,3-dihydrochromen-
4-one; Orange solid

74

68-70

o}

POA®
10. o) cl

E-3-(4-chlorobenzylidene)-2,3-dihydrochromen-4-
one; Yellowish white solid

82

168-170

According to the described procedure, chromanochalcones were converted to spiro-4-

oxochroman-3,1'-cyclopropanes (1a-1j).
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(1a): Light yellow semi-solid, yield = 92% (0.541g); 'H NMR (300 MHz, CDCl3): éu 7.73 (d,
J = 1.5 Hz, 1H, aromatic-H), 7.29 (d, J = 2.2 Hz, 1H, aromatic—H), 7.18-7.16 (m, 2H,
aromatic—Hs), 6.87-6.83 (m, 3H, aromatic—Hs), 4.30 (d, /= 12.0 Hz, 1H, -OCH»>-), 3.89 (d, J
=12.0 Hz, 1H, -OCH2>-), 3.79 (s, 3H, —OCH3), 2.95 (t, J = 8.5 Hz, 1H, cyclopropyl-H), 2.32
(s, 3H, —CH3), 2.00 (dd, J: = 8.9 Hz, J>=4.7 Hz, 1H, cyclopropyl-H), 1.32 (dd, J: = 7.2 Hz, J2
= 4.8 Hz, 1H, cyclopropyl-H); 3C{'H} NMR (75 MHz, CDC3): dc 192.6, 159.9, 158.9, 136.6,
130.8, 130.3, 127.6, 126.6, 121.4, 117.9, 113.9, 69.0, 55.2, 33.5, 32.8, 20.4, 17.1.

(1b): Pale yellow semi-solid, yield = 94% (0.609 g); 'H NMR (300 MHz, CDCI3): du 7.74 (d,
J = 1.8 Hz, 1H, aromatic—H), 7.31-7.27 (m, 1H, aromatic—H), 6.87-6.77 (m, 4H, aromatic—
Hs), 4.31 (d, J=11.9 Hz, 1H, -OCH>2-), 3.94-3.90 (m, 1H, -OCH>-), 3.88 and 3.85 (2s, 6H,
—OCH3s), 2.97 (t, J = 8.3 Hz, 1H, cyclopropyl-H), 2.33 (s, 3H, —CH3), 2.00 (dd, J: = 8.8 Hz, J:
= 4.7 Hz, 1H, cyclopropyl-H), 1.33 (dd, J; = 7.02 Hz, J> = 4.7 Hz, 1H, cyclopropyl-H); *C {!H}
NMR (75 MHz, CDCIl3): dc 192.8, 159.8, 148.8, 148.4, 136.7, 130.8, 128.1, 126.6, 121.4,
121.0, 117.8, 112.8, 111.0, 69.0, 55.8, 33.9, 32.7, 20.4, 17.2.

(1¢): Pale yellow semi-solid, yield = 96% (0.592 g); 'H NMR (300 MHz, CDCl3): du 7.72 (s,
1H, aromatic-H), 7.30-7.27 (m, 1H, aromatic—H), 6.85 (d, /= 8.4 Hz, 1H, aromatic—H), 6.77—
6.69 (m, 3H, aromatic—Hs), 5.95 (s, 2H, —-OCH20-), 4.32 (d, J = 12.0 Hz, 1H, —OCH>2-), 3.92
(d, J=12.0 Hz, 1H, -OCH2-), 2.92 (t, J = 8.3 Hz, 1H, cyclopropyl-H), 2.32 (s, 3H, —CH3),
1.99 (dd, J: = 8.8 Hz, J>=4.8 Hz, 1H, cyclopropyl-H), 1.29 (dd, J;: = 7.01 Hz, J>=4.8 Hz, 1H,
cyclopropyl-H); *C{'H} NMR (75 MHz, CDCl3): c 192.7, 159.8, 147.7, 146.9, 136.7, 130.9,
129.4,126.6, 122.4,121.3,117.9, 109.7, 108.1, 101.1, 68.9, 34.0, 32.8, 20.4, 17.1.

(1d): Yellow semi-solid, yield = 95% (0.532 g); '"H NMR (300 MHz, CDCl3): u 7.95 (d, J =
7.3 Hz, 1H, aromatic—H), 7.48-7.43 (m, 1H, aromatic-H), 7.17 (d, J = 8.4 Hz, 2H, aromatic—
Hs), 7.03 (t, J= 7.7 Hz, 1H, aromatic—Hs), 6.94 (d, J = 8.3 Hz, 1H, aromatic—H), 6.86 (d, J =
8.6 Hz, 2H, aromatic-Hs), 4.33 (d, J = 12.0 Hz, 1H, -OCH»>-), 3.92 (d, /= 12.0 Hz, 1H, —
OCH2-), 3.79 (s, 3H, —OCH3), 2.96 (t, J = 8.1 Hz, 1H, cyclopropyl-H), 2.04-2.00 (m, 1H,
cyclopropyl-H), 1.36-1.32 (m, 1H, cyclopropyl-H); *C{'H} NMR (75 MHz, CDCl3): dc
192.5, 161.8, 158.9, 135.6, 130.3, 127.4, 127.0, 121.7, 121.4, 118.1, 113.9, 69.0, 55.2, 33.7,
32.7,17.0.

(1e): Yellow semi-solid, yield = 97% (0.602 g); '"H NMR (300 MHz, CDCl3): 6u 7.88 (d, J =
7.9 Hz, 1H, aromatic-H), 7.39 (t, J = 8.0 Hz, 1H, aromatic-H), 6.97 (t, J = 7.7 Hz, 1H,
aromatic—H), 6.87 (d, J = 8.3 Hz, 1H, aromatic—H), 6.77-6.70 (m, 3H, aromatic—Hs), 4.27 (d,
J=12.0Hz, 1H,-OCH2>-), 3.88 (d,J=12.6 Hz, 1H,—-OCH2-), 3.80 and 3.78 (2s, 6H, —OCH3s),
2.91 (t,J=8.4 Hz, 1H, cyclopropyl-H), 1.97-1.92 (m, 1H, cyclopropyl-H), 1.31-1.27 (m, 1H,
cyclopropyl-H); *C{'H} NMR (75 MHz, CDCls): dc 192.2, 161.6, 148.7, 148.3, 135.5, 127.9,
126.8,121.6,121.3,121.0, 117.9, 112.8, 110.9, 68.8, 55.7, 33.8, 32.6, 17.0.
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(1f): Pale yellow semi-solid, yield = 96% (0.565 g); 'H NMR (300 MHz, CDCls): du 7.94 (d,
J="17.2 Hz, 1H, aromatic-H), 7.48 (t, J = 8.1 Hz, 1H, aromatic—H), 7.05 (t, J = 7.5 Hz, 1H,
aromatic—H), 6.95 (d, J = 8.4 Hz, 1H, aromatic—H), 6.78-6.70 (m, 3H, aromatic—Hs), 5.96 (s,
2H, -OCH20-), 4.36 (d, J=12.0 Hz, 1H, -OCH2-), 3.96 (d, J= 12.0 Hz, 1H, —OCH>x-), 2.94
(t, J = 8.3 Hz, 1H, cyclopropyl-H), 2.01 (dd, J: = 8.8 Hz, J> = 4.8 Hz, 1H, cyclopropyl-H),
1.33-1.29 (m, 1H, cyclopropyl-H); *C{'H} NMR (75 MHz, CDCl3): éc 192.5, 161.7, 147.7,
147.0, 135.7, 129.3, 127.0, 122.4, 121.7, 121.4, 118.1, 109.7, 108.2, 101.1, 68.9, 34.0, 32.8,
17.1.

(1g): Orange semi-solid, yield = 93% (0.476 g); 'H NMR (300 MHz, CDCI3): 6u 7.94 (d, J =
7.9 Hz, 1H, aromatic—H), 7.48 (t, J = 7.8 Hz, 1H, aromatic-H), 7.22 (d, J = 5.1 Hz, 1H,
aromatic—H), 7.08-6.90 (m, 4H, aromatic—Hs), 4.42 (d, J=12.1 Hz, 1H, -OCH»>-), 4.12 (d, J
=12.1 Hz, 1H, -OCH>-), 3.04 (t, J = 8.3 Hz, 1H, cyclopropyl-H), 2.13 (dd, J: = 8.9 Hz, J> =
4.7 Hz, 1H, cyclopropyl-H), 1.39-1.35 (m, 1H, cyclopropyl-H); *C{'H} NMR (75 MHz,
CDCl3): oc 191.8, 161.8, 139.5, 135.9, 127.1, 126.9, 125.3, 121.7, 121.6, 118.2, 68.9, 33.4,
28.1, 19.1.

(1h): Yellow semi-solid, yield = 95% (0.559 g); '"H NMR (300 MHz, CDCl3): du 7.76 (s, 1H,
aromatic—H), 7.30-7.26 (m, 2H, aromatic—Hs), 7.10 (d, J = 7.4 Hz, 1H, aromatic—H), 6.94—
6.79 (m, 3H, aromatic—Hs), 4.21 (d, /= 11.9 Hz, 1H, -OCHz-), 3.77 (d, J = 11.9 Hz, 1H, —
OCH»2-), 3.62 (s, 3H, —OCH3), 2.91 (t, J = 8.1 Hz, 1H, cyclopropyl-H), 2.33 (s, 3H, —CH3),
2.03-1.98 (m, 1H, cyclopropyl-H), 1.38-1.34 (m, 1H, cyclopropyl-H); *C{'H} NMR (75
MHz, CDCIl3): éc 193.1, 159.8, 159.5, 136.4, 130.4, 129.0, 128.6, 126.7, 124.6, 121.3, 120.0,
117.6, 110.2, 69.0, 55.1, 31.9, 29.8, 20.4, 16.5.

(1i): Yellow semi-solid, yield = 96% (0.538 g); '"H NMR (300 MHz, CDCl3): du 7.95 (d, J =
7.9 Hz, 1H, aromatic—H), 7.47 (t, J = 7.8 Hz, 1H, aromatic—H), 7.24 (t, J = 7.9 Hz, 1H,
aromatic—H), 7.05 (t,J= 7.5 Hz, 1H, aromatic—H), 6.94 (d, /= 8.3 Hz, 1H, aromatic—H), 6.85—
6.81 (m, 3H, aromatic—Hs), 4.32 (d, J = 12.0 Hz, 1H, -OCH2-), 3.99 (d, J = 12.0 Hz, 1H, —
OCH2>-), 3.79 (s, 3H, —OCH3), 3.03 (t, J = 8.1 Hz, 1H, cyclopropyl-H), 2.00 (dd, J; = 8.9 Hz,
J2=4.8 Hz, 1H, cyclopropyl-H), 1.43-1.39 (m, 1H, cyclopropyl-H); *C{'H} NMR (75 MHz,
CDCl3): oc 192.4,161.9, 159.7, 137.2, 135.8, 129.6, 129.5, 127.1, 121.8, 121.5, 118.2, 115.2,
112.8, 69.0, 55.1, 33.8, 32.7, 17.2.

(1j): Yellow semi-solid, yield = 98% (0.557 g); '"H NMR (300 MHz, CDCls): u 7.94 (d, J =
7.9 Hz, 1H, aromatic—H), 7.47 (t, J = 8.4 Hz, 1H, aromatic—H), 7.31-7.17 (m, 4H, aromatic—
Hs), 7.04 (t, J = 7.3 Hz, 1H, aromatic—H), 6.94 (d, J = 8.3 Hz, 1H, aromatic—H), 4.33 (d, J =
12.1 Hz, 1H,-OCH>-), 3.89 (d,/=12.1 Hz, 1H,—-OCH>-), 2.96 (t,J= 8.2 Hz, 1H, cyclopropyl-
H), 2.04 (dd, J: = 8.8 Hz, J> = 4.9 Hz, 1H, cyclopropyl-H), 1.37-1.33 (m, 1H, cyclopropyl-H);
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BC{'H} NMR (75 MHz, CDCl3): éc 192.0, 161.7, 135.8, 134.2, 133.2, 130.6, 128.6, 127.0,
121.6,121.5, 118.1, 68.8, 33.1, 32.7, 16.7.

3-(4-methoxystyryl)-4,6-dimethyl-2 H-chromene (2a):

Brownish yellow solid, yield = 91% (0.27 g), mp: 158-160 °C; '"H NMR (300 MHz, CDCls):
on 7.42 (d, J= 8.8 Hz, 2H, aromatic—Hs meta to -OMe), 7.14 (d, J=16.4 Hz, 1H, olefinic—H),
7.09-6.77 (m, SH, aromatic—Hs), 6.45 (d, J = 16.4 Hz, 1H, olefinic-H), 4.94 (s, 2H, -OCH>—
), 3.83 (s, 3H, ~OCH3), 2.32 (s, 3H, —CH3), 2.21 (s, 3H, —CH3); 3C{'H} NMR (75 MHz,
CDCD): oc 159.4, 151.8, 130.5, 130.4, 129.0, 127.6, 127.4, 126.6, 126.0, 125.2, 124.5, 121.6,
115.4, 114.2, 65.6, 55.3, 20.9, 12.8; HRMS (ESI-TOF, m/z): caled for C20H2102 [M+H]"
293.1542, found 293.1546.

3-(3,4-dimethoxystyryl)-4,6-dimethyl-2 H-chromene (2b):

Light yellow solid, yield = 88% (0.29 g), mp: 138-140 °C; 'H NMR (300 MHz, CDCls): u
7.15-7.01 (m, 4H, aromatic—Hs and olefinic—H), 6.95 (d, J = 8.2 Hz, 1H, aromatic—H), 6.85
(d, J=8.2 Hz, 1H, aromatic-H), 6.77 (d, J = 8.1 Hz, 1H, aromatic-H), 6.44 (d, J = 16.3 Hz,
1H, olefinic—H), 4.93 (s, 2H, -OCH2-), 3.94 (s, 3H, —OCH3), 3.90 (s, 3H, —-OCH3), 2.31 (s, 3H,
—CH3), 2.22 (s, 3H, —CH3); PC{'H} NMR (75 MHz, CDCls): éc 151.7, 149.1, 149.0, 130.7,
130.5, 129.0, 127.6, 126.8, 125.8, 125.1, 124.5, 121.7, 119.5, 115.3, 111.2, 108.8, 65.5, 55.9
(2),20.9, 12.8; HRMS (ESI-TOF, m/z): caled for C21H2303 [M+H]" 323.1648, found 323.1643.

3-((E)-2-(benzo[d][1,3]dioxol-5-yl)vinyl)-4,6-dimethyl-2 H-chromene (2¢):

Brownish yellow semi-solid, yield = 89% (0.27 g); '"H NMR (300 MHz, CDCls): 6u 7.12-6.75
(m, 7H, aromatic—Hs and olefinic—H), 6.40 (d, J = 16.2 Hz, 1H, olefinic—H), 5.98 (s, 2H, —
OCH20-), 4.91 (s, 2H, -OCH»-), 2.31 (s, 3H, —CH3), 2.21 (s, 3H, —CH3); *C{'H} NMR (75
MHz, CDCIl3): oc 151.7, 148.2, 147.3, 132.1, 130.5, 129.0, 127.4, 127.0, 125.7, 125.1, 124.5,
121.9, 121.4, 115.3, 108.5, 105.2, 101.1, 65.5, 20.9, 12.7; HRMS (ESI-TOF, m/z): calcd for
C20H1903 [M+H]" 307.1335, found 307.1328.

3-(4-methoxystyryl)-4-methyl-2H-chromene (2d):

Yellow semi-solid, yield = 96% (0.27 g); 'H NMR (300 MHz, CDCl3): du 7.42 (d, J= 8.7 Hz,
2H, aromatic—Hs meta to —OMe), 7.30—6.85 (m, 7H, aromatic—Hs and olefinic—H), 6.45 (d, J
= 16.4 Hz, 1H, olefinic—H), 4.98 (s, 2H, -OCHx-), 3.83 (s, 3H, —OCH3), 2.22 (s, 3H, —CH3);
BC{™H} NMR (75 MHz, CDCl3): éc 159.5, 154.0, 130.4, 128.6, 128.5, 128.0, 127.7 (2), 126.5,
125.9, 125.5, 124.1, 121.5, 115.7, 114.3, 65.7, 55.4, 55.3 12.8; HRMS (ESI-TOF, m/z): calcd
for C19H1902 [M+H]" 279.1386, found 279.138]1.

3-(3,4-dimethoxystyryl)-4-methyl-2 H-chromene (2e):
Yellow solid, yield = 94% (0.29 g), mp: 158-160 °C; 'H NMR (300 MHz, CDCI3): du 7.30—
6.82 (m, 8H, aromatic—Hs and olefinic—H), 6.43 (d, /= 16.3 Hz, 1H, olefinic—H), 4.97 (s, 2H,
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—~OCH2-), 3.94 (s, 3H, —OCH3), 3.89 (s, 3H, -OCH3), 2.22 (s, 3H, —CH3); *C{'H} NMR (75
MHz, CDCl3): éc 153.9, 149.2, 149.1, 130.7, 128.6, 127.9, 126.6, 125.8, 125.4, 124.0, 121.7,
121.4, 119.7, 115.7, 111.4, 109.0, 65.6, 56.0, 55.9, 12.8; HRMS (ESI-TOF, m/z): calcd for
C20H2103 [M+H]" 309.1491, found 309.1484.

3-((E)-2-(benzold][1,3]dioxol-5-yl)vinyl)-4-methyl-2 H-chromene (2f):

Yellow solid, yield = 92% (0.27 g), mp: 136138 °C; 'H NMR (300 MHz, CDCl3): du 7.30—
6.78 (m, 8H, aromatic—Hs and olefinic—H), 6.41 (d, /= 16.3 Hz, 1H, olefinic—H), 5.98 (s, 2H,
—~OCH:20-), 4.96 (s, 2H, -OCH2-), 2.22 (s, 3H, —CH3); *C{'H} NMR (75 MHz, CDCl3): éc
154.0, 148.4, 147.5, 132.2, 128.7, 127.8, 126.9, 125.7, 125.4, 124.1, 121.9, 121.6 (2), 115.8,
108.6, 105.4, 101.3, 65.6, 12.9; HRMS (ESI-TOF, m/z): calcd for C1oH1703 [M+H]" 293.1178,
found 293.1173.

4-methyl-3-((E)-2-(thiophen-2-yl)vinyl)-2H-chromene (2g):

Orange yellow semi-solid, yield = 90% (0.23 g); '"H NMR (300 MHz, CDCl3): éu 7.31-6.70
(m, 8H, aromatic—Hs and olefinic—H), 6.63 (d, J = 16.1 Hz, 1H, olefinic—H), 4.94 (s, 2H, —
OCH2-), 2.22 (s, 3H, —CH3); 3C{'H} NMR (75 MHz, CDCls): éc 153.9, 143.2, 128.7, 127.7,
127.4,126.1, 125.2, 125.1, 124.5, 124.1, 123.0, 121.4, 121.1, 115.6, 65.2, 12.8; HRMS (ESI-
TOF, m/z): calcd for C16H150S [M+H]" 255.0845, found 255.0840.

3-(4-methoxystyryl)-4-ethyl-2H-chromene (2h):

Light yellow semi-solid, yield = 90% (0.26 g); '"H NMR (300 MHz, CDCl3): éu 7.44 (d, J =
8.8 Hz, 2H, aromatic—Hs meta to —OMe), 7.35-6.90 (m, 7H, aromatic—Hs and olefinic—H),
6.49 (d, J=16.4 Hz, 1H, olefinic—H), 5.00 (s, 2H, -OCH>2-), 3.84 (s, 3H, —OCH3), 2.80-2.73
(m, 2H, ~CH>-), 1.27-1.21 (m, 3H, —CH3); *C{'H} NMR (75 MHz, CDCl:): éc 159.5, 154.4,
132.6, 130.4, 128.5, 127.8, 127.7, 125.1, 124.1, 123.7, 121.5, 121.1, 116.0, 114.3, 65.5, 55.3,
19.8, 14.2; HRMS (ESI-TOF, m/z): caled for C20H2102 [M+H]" 293.1542, found 293.1541.

3-((E)-2-(benzo[d][1,3]dioxol-5-yl)vinyl)-4-ethyl-2 H-chromene (2i):

Light yellow semi-solid, yield = 92% (0.29 g); 'H NMR (300 MHz, CDCl3): 6u 7.34-6.72 (m,
8H, aromatic—Hs and olefinic—H), 6.43 (d, /= 16.3 Hz, 1H, olefinic—H), 5.98 (s, 2H, —OCH20-
), 4.97 (s, 2H, -OCH»2-), 2.78-2.71 (m, 2H, -CH»-), 1.21 (t, J = 7.6 Hz, 3H, -CH3); *C{'H}
NMR (75 MHz, CDCl3): dc 154.4, 148.3, 147.5, 133.0, 132.2, 128.5, 127.8, 124.8, 124.0,
123.9, 123.8, 121.5 (2), 116.0, 108.5, 105.3, 101.2, 65.4, 19.8, 14.2; HRMS (ESI-TOF, m/z):
calcd for C20H1903 [M+H]" 307.1335, found 307.1330.

3-(4-methoxystyryl)-4-phenyl-2H-chromene (2j):

Deep yellow semi-solid, yield = 91% (0.31 g); 'H NMR (300 MHz, CDCls): 61 7.56—6.74 (m,
14H, aromatic—Hs and olefinic—H), 6.52 (d, /= 16.5 Hz, 1H, olefinic—H), 5.24 (s, 2H, -OCH>—
), 3.82 (s, 3H, “OCH3); *C{'H} NMR (75 MHz, CDCl3): éc 159.5, 154.1, 136.6, 133.6, 130.7,
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130.1, 128.9, 128.6, 128.0, 127.8 (2), 126.7, 126.6, 125.3, 124.1, 122.9, 121.5, 121.4, 115.8,
114.3 (2), 65.9, 55.4, 55.3; HRMS (ESI-TOF, m/z): calcd for C24H2102 [M+H]" 341.1542,
found 341.1544.

3-(3,4-dimethoxystyryl)-4-phenyl-2 H-chromene (2k):

Yellow semi-solid, yield = 89% (0.33 g); 'H NMR (300 MHz, CDCI3): éu 7.51-6.65 (m, 13H,
aromatic—Hs and olefinic—H), 6.45 (d, J = 16.5 Hz, 1H, olefinic—Hs), 5.19 (s, 2H, —OCH>-),
3.86 and 3.82 (m, 6H, 2 ~OCHzs); *C{!H} NMR (75 MHz, CDCls): dc 153.9, 149.1, 136.4,
133.7, 130.6, 130.5, 130.0, 129.6, 128.8, 128.4, 128.0, 127.7, 126.6, 126.5, 125.1, 123.3, 121 4,
119.5, 115.7, 111.4, 109.3, 65.9, 65.7, 55.9, 55.8; HRMS (ESI-TOF, m/z): calcd for
C2sH22NaOs3 [M+Na]* 393.1467, found 393.1468.

3-((E)-2-(benzo|[d][1,3]dioxol-5-yl)vinyl)-4-phenyl-2 H-chromene (21):

Orange yellow semi-solid, yield = 90% (0.33 g); '"H NMR (300 MHz, CDCl3): éu 7.53-6.74
(m, 12H, aromatic—Hs), 6.68 (d, J=16.5 Hz, 1H, olefinic—H), 6.45 (d, /=16.5 Hz, 1H, olefinic—
H), 5.93 (s, 2H, -OCH20-), 5.20 (s, 2H, ~OCH>-); *C{'H} NMR (75 MHz, CDCl3): éc 154.0,
148.2, 147.5, 136.4, 133.9, 131.9, 130.6, 128.9, 128.5, 128.0, 127.8, 126.7, 126.4, 125.2, 123.3,
121.7, 121.4, 115.8, 108.5, 105.4, 101.2, 65.9; HRMS (ESI-TOF, m/z): calcd for C24H1903
[M+H]" 355.1335, found 355.1336.

3-(4-methoxystyryl)-4-allyl-2H-chromene (2m):

Deep yellow semi-solid, yield = 89% (0.27 g); '"H NMR (300 MHz, CDCI3): 6u 7.45 (d, J= 8.6
Hz, 2H, aromatic—Hs meta to -OMe), 7.34 (d, J = 6.7 Hz, 2H, aromatic—Hs), 7.29-6.89 (m,
5H, aromatic—Hs and olefinic—H), 6.54 (d, J = 16.3 Hz, 1H, olefinic—H), 6.07-5.98 (m, 1H,
olefinic—H), 5.25-5.14 (m, 2H, olefinic—Hs), 5.05 (s, 2H, -OCH>-), 3.85 (s, 3H, ~OCH3), 3.52—
3.50 (m, 2H, -CH>-); *C{'H} NMR (75 MHz, CDCI3): éc 159.6, 154.3, 135.4, 130.3, 128.6,
128.4,128.0, 127.8, 127.3, 127.1, 124.5, 124.2, 121.5, 121.1, 116.2, 115.9, 114.3, 114.2, 65.5,
55.4,30.8; HRMS (ESI-TOF, m/z): calcd for C21H2102 [M+H]" 305.1542, found 305.1544.

4-allyl-3-((E)-2-(benzo[d][1,3]dioxol-5-yl)vinyl)-2H-chromene (2n):

Light yellow semi-solid, yield = 91% (0.30 g); '"H NMR (300 MHz, CDCl3): éu 7.33 (d, J =
7.7 Hz, 1H, aromatic—H), 7.21-6.81 (m, 7H, aromatic—Hs and olefinic—H), 6.48 (d, J = 16.3
Hz, 1H, olefinic-H), 6.06-5.95 (m, 3H, —-OCH20- and olefinic-H), 5.24-5.14 (m, 2H,
olefinic—Hs), 5.03 (s, 2H, -OCH2-), 3.50-3.48 (m, 2H, —CH>-); *C{'H} NMR (75 MHz,
CDCl3): oc 154.3, 148.3, 147.6, 135.4, 132.0, 128.7, 128.5, 128.4, 126.9, 124.4, 124.3, 121.7,
121.6, 121.5, 116.3, 116.0, 108.6, 105.4, 101.3, 65.5, 30.8; HRMS (ESI-TOF, m/z): calcd for
C21H1903 [M+H]" 319.1335, found 319.1335.
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Compound 3a: [X = O, G! = 4-Me, G*> = 2-OMe, R = Me]

Light yellow solid, yield = 93% (0.29 g), mp: 90-92 °C; '"H NMR (300 MHz, CDCl3): 5 7.38
(d, J= 1.6 Hz, 1H, aromatic—H ortho to -C(Me)OH), 7.28-7.23 (m, 1H, aromatic—H), 7.16 (d,
J = 7.2 Hz, 1H, aromatic—H), 6.99—6.93 (m, 2H, aromatic—Hs), 6.84 (d, J = 8.1 Hz, 1H,
aromatic—H), 6.70 (d, /= 8.3 Hz, 1H, aromatic—H ortho to -OMe), 3.86 (d, /= 11.5 Hz, 1H, —
OCH2-), 3.70 (s, 3H, —OCH3), 3.35 (d, J=11.4 Hz, 1H, -OCH>-), 3.23 (s, 1H, —-OH), 2.48 (t,
J="7.7Hz, 1H, —CH- of cyclopropane), 2.32 (s, 3H, —CH3), 1.48 (s, 3H, —-CH3), 1.32—-1.21 (m,
2H, —CHa- of cyclopropane); *C{'H} NMR (75 MHz, CDCl3): c 158.6, 152.2, 130.0, 129.5,
129.2, 128.8, 128.1, 127.4, 125.8, 120.8, 116.9, 109.8, 68.7, 68.0, 55.3, 30.9, 25.6, 20.8, 19.0,
13.3; HRMS (ESI-TOF, m/z): caled for C20H2203Na [M+Na]" 333.1467, found 333.1468.

Compound 3b: [X =0, G' =H, G?> = 3-OMe, R = Me]

Pale yellow semi-solid, yield = 94% (0.28 g); 'H NMR (300 MHz, CDCI3): u 7.57-7.54 (m,
2H, aromatic—Hs ortho to —-C(Me)OH), 7.21-7.16 (m, 4H, aromatic—Hs), 6.99—6.94 (m, 2H,
aromatic—Hs), 6.85-6.75 (m, 8H, aromatic—Hs), 4.17—4.07 (m, 2H, -OCH2-), 3.81 & 3.75 (2s,
6H, —OCHzss), 3.59 (d, /= 11.9 Hz, 1H, —-OCH»>-), 3.46 (d, /= 11.8 Hz, 1H, -OCH>2-), 2.64—
2.53 (m, 2H, —CH- of cyclopropane), 2.05 (broad s, 1H, —OH), 1.74 & 1.61 (2s, 6H, —CH3s),
1.21-1.02 (m, 4H, -CH>- of cyclopropane); *C {!H} NMR (75 MHz, CDCI3): éc 159.7, 159.4,
154.3 (2), 139.6, 139.3, 130.3, 130.1, 129.5, 129.4, 129.1, 129.0, 126.7, 126.4, 121.9, 121.3,
120.9, 120.7, 116.9, 115.2, 114.9, 112.2, 111.7, 69.5, 68.7, 68.6, 67.9, 55.2 (2), 30.9, 30.7,
29.8,29.1,28.6,24.5,23.2,12.7,10.4; HRMS (ESI-TOF, m/z): calcd for C19H2003Na [M+Na]"
319.1311, found 319.1310.

Compound 3c¢: [X =0, G' =H, G*>=4-Cl, R = Me]

Pale yellow semi-solid, yield = 95% (0.29 g ); 'H NMR (300 MHz, CDCl3): du 7.56-7.52 (m,
2H, aromatic—Hs ortho to —-C(Me)OH), 7.30-7.11 (m, 10H, aromatic—Hs), 7.01-6.95 (m, 2H,
aromatic—Hs), 6.81-6.77 (m, 2H, aromatic—Hs), 4.17 (d, /= 12.0 Hz, 1H, -OCH»>-), 4.04 (d, J
= 12.0 Hz, 1H, -OCH»>-), 3.49 (d, J = 12.0 Hz, 1H, -OCH>-), 3.43 (d, J = 12.0 Hz, 1H, —
OCH2>-), 2.62-2.48 (m, 2H, —CH- of cyclopropane), 2.06 (broad s, IH, —OH), 1.73 & 1.61 (2s,
6H, —CH3s), 1.16-0.99 (m, 4H, —CH>— of cyclopropane); *C {'H} NMR (75 MHz, CDCl3): §c
154.2 (2), 136.5, 136.2, 132.4 (2), 130.9, 130.3, 130.1 (2), 129.2, 128.8, 128.6, 128.4, 126.4,
121.0, 120.9, 117.0, 69.2, 68.7, 68.6, 67.8, 32.3, 31.0, 30.9, 29.8, 28.9, 26.5, 23.8, 22.7, 12.8,
10.3; HRMS (ESI-TOF, m/z): calcd for Ci1sH1702CIK [M+K]" 341.0888, found 341.0831.
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Fig. S32 3C{'H} NMR (75 MHz, CDCl3) spectrum of 2f
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Fig. S41 '"H NMR (300 MHz, CDCls) spectrum of 2k
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Fig. S45 '"H NMR (300 MHz, CDCl3) spectrum of 2m
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Fig. S46 *C{'H} NMR (75 MHz, CDCl3) spectrum of 2m
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Fig. S47 'H NMR (300 MHz, CDCl3) spectrum of 2n

Fig. S48 3C{'H} NMR (75 MHz, CDCl3) spectrum of 2n
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Fig. S51 '"H NMR (300 MHz, CDCls) spectrum of 3b

Fig. S52 *C{'H} NMR (75 MHz, CDCl3) spectrum of 3b
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Table S1. Details of time resolved data of the synthesized chromenes in different solvents.

Compound

2a

2b

2d

2e

2f

2h

Solvent

ACN
Cy
DMF
DiOX
MeOH
H20
ACN
Cy
DMF
DiOX
MeOH
H.O
ACN
Cy
DMF
DiOX
MeOH
H20
ACN
Cy
DMF
DiOX
MeOH
H20
ACN
Cy
DMF
DiOX
MeOH
H.O
ACN
Cy
DMF
DiOX

71 (ns)*

0.35
0.40
0.74
0.30
0.56
0.28
0.33
0.33
0.43
0.27
0.30
0.31
0.45
0.31
0.46
0.26
0.36
0.30
0.34
0.29
0.42
0.25
0.34
0.30
0.30
0.28
0.42
0.25
0.28
0.20
0.30
0.25
0.29

a;”
0.56
0.66
0.82
0.51
0.91
0.99
0.85
0.96
0.87
0.93
0.96
0.92
0.72
0.84
0.74
0.80
0.94
0.98
0.82
0.93
0.78
0.85
0.98
0.96
0.93
0.95
0.91
0.94
0.96
0.97
0.47
0.97
0.97

7, (ns)?

1.36
0.97
1.55
1.43
1.45
1.95
1.32
0.97
1.44
1.16
1.36
1.54
1.40
1.27
1.56
1.33
1.45
1.62
1.32
1.01
1.36
1.08
1.35
1.64
2.15
1.41
1.92
1.37
1.89
3.25
1.36
1.12
1.38
1.10

(lzb

0.44
1.00
0.34
0.18
0.49
0.09
0.01
0.15
0.04
0.13
0.07
0.04
0.08
0.28
0.16
0.26
0.20
0.06
0.02
0.18
0.07
0.22
0.15
0.02
0.04
0.07
0.05
0.09
0.06
0.04
0.03
0.53
0.03
0.03

Tavg (ns)

0.79
0.97
0.79
0.86
0.86
0.69
0.29
0.43
0.37
0.53
0.35
0.35
0.40
0.68
0.51
0.69
0.50
0.44
0.32
0.46
0.37
0.57
0.42
0.37
0.37
0.38
0.36
0.51
0.35
0.40
0.24
0.74
0.29
0.32

2

X
1.003
1.020
1.020
1.020
1.007
1.100
1.020
1.007
1.005
1.010
1.003
1.010
1.020
1.001
1.010
1.010
1.001
1.010
1.005
1.010
1.006
1.010
1.010
1.020
1.020
1.090
1.010
1.010
1.010
1.010
1.010
1.020
1.002
1.010
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2i

2k

21

2m

2n

MeOH
H20
ACN
Cy
DMF
DiOX
MeOH
H.O
ACN
Cy
DMF
DiOX
MeOH
H.O
ACN
Cy
DMF
DiOX
MeOH
H20
ACN
Cy
DMF
DiOX
MeOH
H.O
ACN
Cy
DMF
DiOX
MeOH
H20

0.19
0.34
0.32
0.23
0.13
0.40
0.33
0.34
0.28
0.22
0.34
0.37
0.26
0.31
0.25
0.26
0.27
0.31
0.25
0.33
0.28
0.57
0.28
0.51
0.26
0.26
0.27
0.21
0.30
0.39
0.27
0.29

0.96
0.96
0.97
0.78
0.52
0.90
1.00
0.95
0.98
0.75
0.98
0.89
0.96
0.98
0.97
0.92
0.95
0.94
0.94
0.95
0.97
0.94
0.97
0.87
0.96
0.98
0.98
0.97
0.98
0.90
0.98
0.98

1.14
3.32
2.13
1.03
0.36
0.87
3.64
1.14
1.07
1.38
0.96
0.87
2.72
1.99
1.69
1.99
1.60
2.01
2.93
2.14
1.38
2.10
1.31
1.98
3.68
2.28
1.10
2.09
1.19
2.03
3.30

0.04
0.04
0.03
0.22
0.48
0.10
0.05
0.02
0.25
0.02
0.11
0.04
0.02
0.03
0.08
0.05
0.06
0.06
0.05
0.03
0.06
0.03
0.13
0.04
0.02
0.02
0.03
0.02
0.10
0.02
0.02

0.23
0.46
0.37
0.41
0.24
0.45
0.33
0.51
0.30
0.43
0.36
0.44
0.28
0.36
0.30
0.37
0.36
0.39
0.36
0.46
0.34
0.62
0.33
0.59
0.33
0.33
0.31
0.24
0.34
0.47
0.31
0.35

1.030
1.030
1.010
1.010
1.010
1.010
1.030
1.060
1.010
1.030
1.010
1.020
1.010
1.050
1.010
1.020
1.002
1.020
1.005
1.020
1.020
1.010
1.010
1.002
1.010
1.050
1.010
1.030
1.010
1.020
1.005
1.070

The short (z;) and long (7,) lived decay times. ®The corresponding pre-exponential coefficients.
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Table S2. Fluorescence lifetime of HSA as a function of different 2H-chromene

concentrations.

Compound

2a

2b

2d

2e

2f

2h

2i

Conc. (M)
0
2.56
4.95
0
0.95
1.72
2.68
4.36
6.67
0
0.52
1.21
243
412
6.13
8.16
0
0.60
1.45
2.70
4.85
6.90
0
1.53
4.51
10.58
0
0.24
0.76
1.52
3.81
0
0.52

7, (ns)®
3.55
1.57
0.84
3.55
2.64
1.99
1.86
1.65
1.51
3.55
2.84
2.41
2.23
1.91
1.73
1.60
3.55
3.57
3.11
2.99
2.47
2.12
3.55
2.71
2.32
2.16
3.55
2.37
2.01
1.95
1.84
3.55
2.29

(l]a

0.59
0.57
0.74
0.59
0.55
0.59
0.72
0.83
0.86
0.59
0.62
0.64
0.67
0.71
0.77
0.80
0.59
0.66
0.66
0.69
0.74
0.76
0.59
0.67
0.76
0.83
0.59
0.72
0.80
0.85
0.86
0.59
0.70

7 (ns)°
7.84
6.03
4.72
7.84
7.18
6.62
7.12
7.03
6.88
7.84
7.57
7.36
7.22
7.15
7.09
712
7.84
7.67
7.47
7.63
7.86
6.84
7.84
7.44
7.08
6.94
7.84
7.16
6.70
6.54
6.18
7.84
6.98

(lza

0.41
0.43
0.26
0.41
0.45
0.41
0.28
0.17
0.14
0.41
0.38
0.36
0.33
0.29
0.23
0.20
0.41
0.34
0.34
0.31
0.26
0.24
0.41
0.33
0.24
0.17
0.41
0.28
0.20
0.15
0.14
0.41
0.30

Tavg (NS)
5.31
3.49
1.85
5.31
4.68
3.89
3.33
2.56
2.26
5.31
4.64
4.19
3.87
3.43
2.96
2.70
5.31
4.96
4.59
4.42
3.87
3.25
5.31
4.27
3.46
2.97
5.31
3.71
2.95
2.64
2.45
5.31
3.70

2

X
1.07
1.02
1.03
1.07
1.01
1.01
1.02
1.03
1.03
1.07
1.01
1.02
1.03
1.03
1.03
1.04
1.07
1.03
1.05
1.01
1.02
1.01
1.07
1.08
1.06
1.06
1.07
1.06
1.03
1.01
1.07
1.07
1.03
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1.10
2.32
4.56
2k 0
0.47
1.72
3.21
5.46
2| 0
0.47
1.73
2.51
3.88
5.56
2m 0
0.45
1.29
2.74
3.98
5.23
2n 0
0.55
1.51
2.52
3.87

2.09
1.94
1.85
3.55
2.27
1.90
1.81
1.75
3.55
2.34
1.93
1.82
1.68
1.61
3.55
2.87
2.39
219
2.02
1.79
3.55
218
1.91
1.83
1.68

0.80
0.85
0.87
0.59
0.65
0.75
0.81
0.83
0.59
0.63
0.72
0.78
0.79
0.80
0.59
0.63
0.65
0.71
0.76
0.78
0.59
0.78
0.87
0.89
0.84

6.92
6.49
6.08
7.84
7.01
6.79
6.77
6.76
7.84
7.07
6.72
6.71
6.40
6.26
7.84
7.43
7.08
6.98
6.80
6.44
7.84
6.75
5.89
5.14
3.96

0.20
0.15
0.13
0.41
0.35
0.25
0.19
0.17
0.41
0.37
0.28
0.22
0.21
0.20
0.41
0.37
0.35
0.29
0.24
0.22
0.41
0.22
0.13
0.11
0.16

3.06
2.62
2.40
5.31
3.93
3.12
2.75
2.60
5.31
4.09
3.27
2.89
2.67
2.54
5.31
4.56
4.03
3.58
3.17
2.81
5.31
3.19
2.43
2.19
2.05

1.05
1.05
1.04
1.07
1.01
1.07
1.02
1.05
1.07
1.01
1.06
1.02
1.03
1.03
1.07
1.04
1.07
1.03
1.04
1.06
1.07
1.06
1.01
1.02
1.01

"The corresponding pre-exponential coefficients. "The short (,) and long (z,) lived decay times.
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Table S3. Fluorescence lifetime of BSA as a function of different 2H-chromene

concentrations.

Compound

2a

2b

2d

2e

2f

2h

Conc. (uM)
0
0.51
0.95
1.57
2.75
4.06
0
0.8
1.6
3.0
4.12
6.08
8.12
10.24
12.32
0
0.42
1.70
3.08
4.68
71
0
0.40
1.02
2.56
5.52
8.02

0.51
2.29
3.14
5.30

0.76
1.68
2.76

71 (ns)?
4.57
3.82
3.27
2.64
2.38
2.03
4.57
3.60
3.12
2.81
2.64
214
1.92
2.04
2.03
4.57
3.60
3.15
2.63
2.20
212
4.57
4.14
3.84
3.95
3.30
2.96
4.57
3.39
2.73
2.50
2.32
4.57
2.83
2.29
2.07

(l]b

0.56
0.57
0.57
0.54
0.58
0.62
0.56
0.50
0.53
0.54
0.58
0.58
0.64
0.80
0.84
0.56
0.61
0.58
0.61
0.73
0.78
0.56
0.60
0.58
0.61
0.58
0.58
0.56
0.51
0.57
0.64
0.67
0.56
0.54
0.66
0.75

T, (ns)?
7.23
6.89
6.63
6.25
6.26
6.12
7.23
6.74
6.66
6.56
6.59
6.27
6.26
5.95
5.94
7.23
7.05
6.97
6.89
6.14
6.11
7.23
7.33
7.39
7.41
7.26
7.15
7.23
6.68
6.35
6.31
6.16
7.23
6.47
6.09
5.78

(lzb

0.44
0.43
0.43
0.46
0.42
0.38
0.44
0.50
0.47
0.46
0.42
0.42
0.36
0.20
0.16
0.44
0.39
0.42
0.39
0.27
0.22
0.44
0.40
0.42
0.39
0.42
0.42
0.44
0.49
0.43
0.36
0.33
0.44
0.46
0.34
0.25

Tavg (0S)
5.74
5.14
4.71
4.30
4.01
3.58
5.74
5.17
4.78
4.53
4.30
3.87
3.48
2.82
2.66
5.74
4.95
4.75
4.29
3.26
2.99
5.74
5.41
5.33
5.30
4.96
4.72
5.74
5.01
4.29
3.87
3.59
5.74
4.50
3.58
2.99

X
1.02
1.08
1.06
1.04
1.06
1.02
1.02
1.01
1.03
1.05
1.06
1.08
1.06
1.01
1.01
1.02
1.09
1.09
1.03
1.01
1.01
1.02
1.02
1.09
1.02
1.01
1.06
1.02
1.01
1.01
1.04
1.01
1.02
1.01
1.01
1.01
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4.58
2i 0
0.91
212
4.16
5.15
6.15
2k 0
0.62
1.25
210
2.72
3.54
4.25
5.10
2 0
0.64
1.22
1.89
2.76
3.57
4.44
2m 0
0.74
1.51
2.52
3.26
4.27
5.11
2n 0
0.51
1.28
2.35
5.12
7.21
9.35
12.12

1.96
4.57
2.97
2.34
2.18
2.07
1.89
4.57
3.30
3.01
2.71
2.43
2.26
2.06
1.98
4.57
3.94
3.29
3.04
2.51
2.31
2.01
4.57
3.77
3.41
3.07
2.60
2.53
2.29
4.57
3.30
3.01
2.71
2.43
2.26
2.06
1.98

0.80
0.56
0.59
0.61
0.70
0.74
0.77
0.56
0.52
0.54
0.52
0.56
0.60
0.64
0.68
0.56
0.55
0.52
0.54
0.53
0.60
0.64
0.56
0.54
0.55
0.56
0.55
0.62
0.63
0.56
0.52
0.54
0.52
0.56
0.60
0.64
0.68

5.52
7.23
6.41
5.76
5.69
5.61
5.36
7.23
6.92
6.77
6.53
6.48
6.41
6.31
6.27
7.23
7.04
6.68
6.54
6.28
6.27
5.98
7.23
7.03
6.85
6.67
6.33
6.34
6.19
7.23
6.92
6.77
6.53
6.48
6.41
6.31
6.27

0.20
0.44
0.41
0.39
0.30
0.26
0.23
0.44
0.48
0.46
0.48
0.44
0.40
0.36
0.32
0.44
0.45
0.48
0.46
0.47
0.40
0.36
0.44
0.46
0.45
0.44
0.45
0.38
0.37
0.44
0.48
0.46
0.48
0.44
0.40
0.36
0.32

2.67
5.74
4.38
3.67
3.23
2.99
2.68
5.74
5.04
4.74
4.54
4.21
3.92
3.59
3.35
5.74
5.33
4.91
4.65
4.28
3.89
3.43
5.74
5.27
4.96
4.65
4.28
3.98
3.73
5.74
5.04
4.74
4.54
4.21
3.92
3.59
3.35

1.01
1.02
1.01
1.04
1.01
1.01
1.01
1.02
1.07
1.06
1.02
1.04
1.07
1.02
1.03
1.02
1.05
1.09
1.01
1.01
1.05
1.01
1.02
1.06
1.01
1.07
1.03
1.01
1.06
1.02
1.07
1.06
1.02
1.04
1.07
1.02
1.03

*The short (z;) and long (t,) lived decay times; "The corresponding pre-exponential coefficients.
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Fig. S77 Change in the CD spectra of BSA in the presence of (a) 2a, (b) 2b, (c) 2d, (d) 2e,
(e) 2f, (f) 2h, (g) 2i, (h) 2k, (i) 21, (j) 2m and (k) 2n, respectively.
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Fig. S78 Docking results of chromene-HSA System
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Fig. S79 Docking results of chromene-BSA System
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Table S4. Theoretical binding free energy values and Distances from the Tryptophan

moieties of the chromenes with HSA and BSA.

System

HSA

System Compound

BSA

Compound

2a

2b

2d

2e

2f

2h

2i

2k

2|

2m

2n

Energy
(kJ/mol)

2a - 8.6
2b - 8.8
2d -7.9
2e -8.5
2f -7.8
2h -76
2j -8.7
2k -7.8
2 -75
2m -94
2n -85

Energy
(kJ/mol)

-94
-7.3
-7.2
-84
-94
-6.2
-8.5
=127
-6.2
-75
-7.8

Distance
(Trp 134)
(Computation)
(A)
35.10

34.70
23.70
36.60
23.00
23.10
36.70
30.00
18.30
34.20
27.90

Distance
(Trp 214)
(Computation)

(A)
9.00
21.00
20.00
14.00
13.80
19.30
12.90
9.20
9.70
26.00
11.40

Distance
(Trp 213)
(Computation)
(A)
59.70

55.70
45.30
59.40
46.00
42.60
59.00
59.80
42.70
55.40
50.80

Distance
(Experimental)

(A)
24.59
25.29
25.71
30.86
26.31
30.30
29.53
30.51
27.95
32.26
29.41

Distance
(Experimental)

(A)
28.26
26.99
25.75
34.81
24.89
29.36
29.09
31.97
29.79
31.42
32.53

Position

A
A
A
A
A
A
A
A
A
A
A

Position

MA
MMA
A
MA
MA
MA
MA
MA
MA
MA
MA
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