

1

Supplementary Materials for

3

4 Synergistic NIR-Polydopamine Nanotherapy for Blood–Brain Barrier Crossing and

5 Parkinson’s Disease Intervention

6

Xueer Xia *et al.*

8

⁹ *Corresponding author. Email: liujianh80@126.com; sharon@buaa.edu.cn;

10 Supplementary Materials

11 Cell counting kit-8 (CCK-8) and ROS assay kit were obtained from Shanghai Beyotime Biotech.,
12 Inc., China. BAX, Bcl-2, IL-10, α -syn, β -actin, TH, NF, GFAP, IL-6, IL-1 β , and TNF- α polyclonal
13 antibodies were purchased from Proteintech Group, Inc. Ultrapure water ($18.2\text{ M}\Omega\text{ cm}^{-1}$ at 25°C)
14 was prepared using the Milli-Q system (Millipore, USA). All the other chemicals and reagents
15 were of analytical grade or higher.

16

17 Supplementary Methods: Animal Procurement, Housing

18 C57BL/6J mice (SPF grade, 6-8 weeks, 18-22 g, male) were purchased from SPF Biotechnology
19 Co. (Beijing, China), which were maintained at the Animal Research Center of the Chinese
20 Academy of Sciences under constant temperature and humidity. After 7 d acclimatization period,
21 PD models were established.

22

23 **Supporting Information**

24 **Section S1.1 Physicochemical Characterization**

25 The particle size and zeta potential of ZnO, ZnO@PDA, and PDA were tested under the
26 following conditions: a mobility range of $\pm 10 \mu\text{cm/Vs}$, conductivity range of 0–200 mS/cm, and
27 temperature range of 2–90°C. Optical absorption properties were measured using UV2600 UV-
28 Vis spectroscopy (Shimadzu Corporation, Japan). Measurements were conducted at 35°C with
29 humidity of 30-80%, scanning from 200 to 900 nm. The chemical composition and molecular
30 structure were analyzed by FTIR (Thermo Fisher Nicolet iN10, USA). The background spectrum
31 was collected prior to sample measurement, with a resolution of 4 cm^{-1} , 32 scans, and a
32 wavenumber range of 400/600-4000 cm^{-1} . The crystal structures of ZnO and ZnO@PDA were
33 characterized by X-ray diffraction (XRD, Rigaku SmartLab SE). The morphology and elemental
34 distribution were observed by XPS (Thermo Scientific K-Alpha, USA) and TEM, respectively.

35

36 **Section S1.2 ROS Scavenging Activity of ZnO@PDA**

37 ZnO@PDA solution (0-1 mg/mL, 0.2 mL) was mixed with 1.8 mL of 0.1 mM DPPH ethanol
38 solution. After incubation at 37°C in the dark for 30 min, absorbance spectra (200-800 nm) were
39 recorded using a Shimadzu UV2600 spectrophotometer under controlled conditions (15-35°C, 30-
40 80% humidity). The radical-scavenging capacity was calculated based on the reduction in
41 absorbance at 517 nm. For ·OH scavenging assay, the reaction system contained: 1.7 mL acetate
42 buffer (pH 4.6), 0.1 mL ZnO@PDA dispersion (0-1 mg/mL), 0.1 mL 100 mM H_2O_2 , and 0.1 mL
43 of 100 mM TMB. After 3 h of incubation at room temperature, the blue reaction product was
44 acidified with 0.2 mL 6 M HCl (yielding yellow color) and spectrophotometrically measured. For
45 the O_2^- scavenging assay, a WST-8-based superoxide dismutase assay kit was used: 160 μL

46 working solution, 20 μ L sample solution (0-1 mg/mL), and 20 μ L starter solution. After 30 min of
47 incubation, absorbance was measured at 450 nm using a SPARK 10M microplate reader. The
48 scavenging activity was determined from the kinetic curves.

49

50 **Section S1.3 Assessing Cell Viability**

51 PC12 cells were seeded into 96-well plates and incubated overnight (37°C, 5% CO₂). A 6-OHDA
52 solution was prepared in 0.9% NaCl containing 0.2% ascorbic acid, at concentrations ranging from
53 0 to 500 μ mol/L. After removal of the culture medium, the cells were treated with various
54 concentrations of 6-OHDA for 24 h. Cell viability was assessed using the CCK-8 assay (10
55 μ L/well, 1 h incubation), and absorbance was measured at 450 nm. The concentration of 6-OHDA
56 that induced approximately 50% cell death was selected for subsequent experiments. To evaluate
57 the protective effects of ZnO@PDA, cells were pretreated with ZnO@PDA (10–300 μ g/mL) for
58 6 h prior to 24 h exposure to a predetermined concentration of 6-OHDA. Then, 10 μ L/well of
59 CCK-8 reagent was added and incubated for 1 h. Absorbance was measured at 450 nm. The
60 concentration of ZnO@PDA that showed the greatest cytoprotective effect was selected for further
61 studies.

62

63 **Section S1.4 Cellular Uptake Assay**

64 PC12 cells were seeded in 12-well plates and incubated overnight (37°C, 5% CO₂). The medium
65 was replaced with fresh medium containing: 150 μ g/mL Cy5-ZnO@PDA (control group) and 150
66 μ g/mL Cy5-ZnO@PDA + NIR (808 nm laser, 0.3 W/cm² for 5 min, experimental group). Cells
67 were incubated for 1 h. Subsequently, the cells were fixed with 4% paraformaldehyde for 15 min,
68 followed by 5 μ g/mL phalloidin solution for 15 min and 5 μ g/mL DAPI solution for 15 min

69 (protected from light). Samples were visualized using a confocal fluorescence microscope.
70 Fluorescence stability was evaluated (Figure S4-6).

71

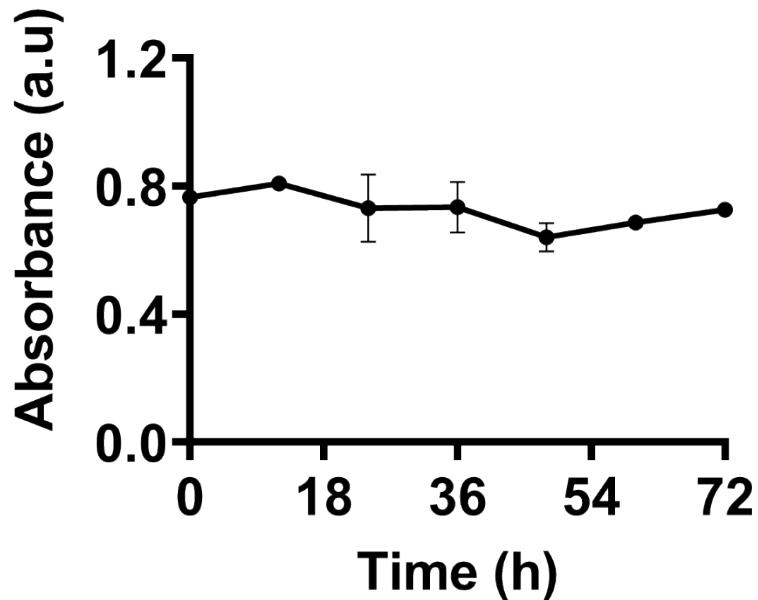
72 **Section S1.5 Flow Cytometry Assays**

73 PC12 cells were seeded in a 6-well plate and divided into four groups: control, 6-OHDA, 6-OHDA
74 + ZnO@PDA, and 6-OHDA + ZnO@PDA + NIR (808 nm laser, 0.3 W/cm², 5 min). After 12 h
75 of drug treatment, cells were washed twice with ice-cold 1× PBS, digested with trypsin, and
76 collected in sterile flow cytometry tubes. and centrifuged at 800 g for 6 min. Next, the supernatant
77 was discarded, the cells were resuspended in 1X PBS, centrifuged again, resuspended in 1 mL
78 PBS, and finally stained with the fluorescent probe (CM-H2 DCFDA) at 37°C for 30 min. The
79 mean fluorescence intensity of cells in each group was determined using flow cytometry.

80

81 **Section S1.6 Cell Apoptosis Detection**

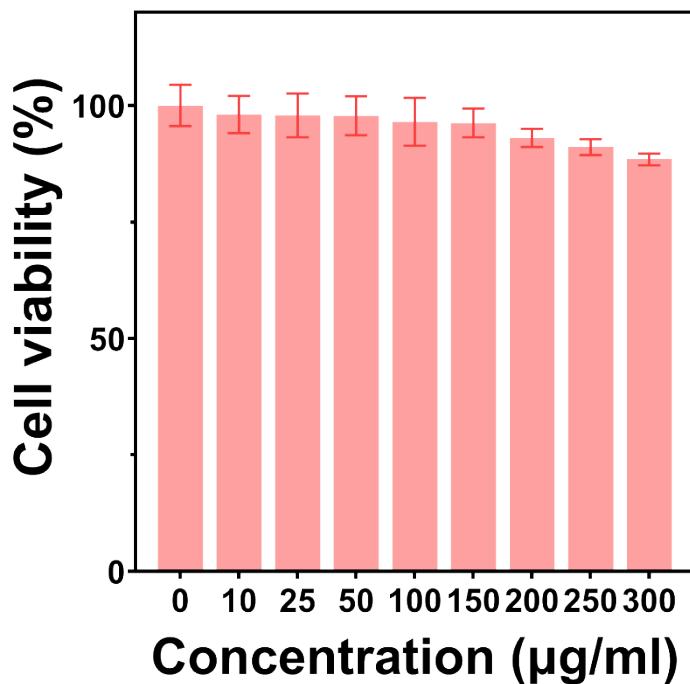
82 PC12 cells were allocated to four treatment groups as previously described. Following EDTA-free
83 trypsinization and centrifugation, the cells were washed with PBS and resuspended in 100 µL of
84 Annexin V Binding Buffer (1×). The cell suspension was stained with 5 µL Annexin V-
85 AbFlourTM 488 and 2 µL propidium iodide (PI) for 15 min at room temperature in the dark. After
86 adding 400 µL of binding buffer, the samples were analyzed by flow cytometry within 30 min of
87 staining using standard FITC (excitation/emission: 491/517 nm) and PI (535/617 nm) detection
88 channels within 30 min of staining.


89

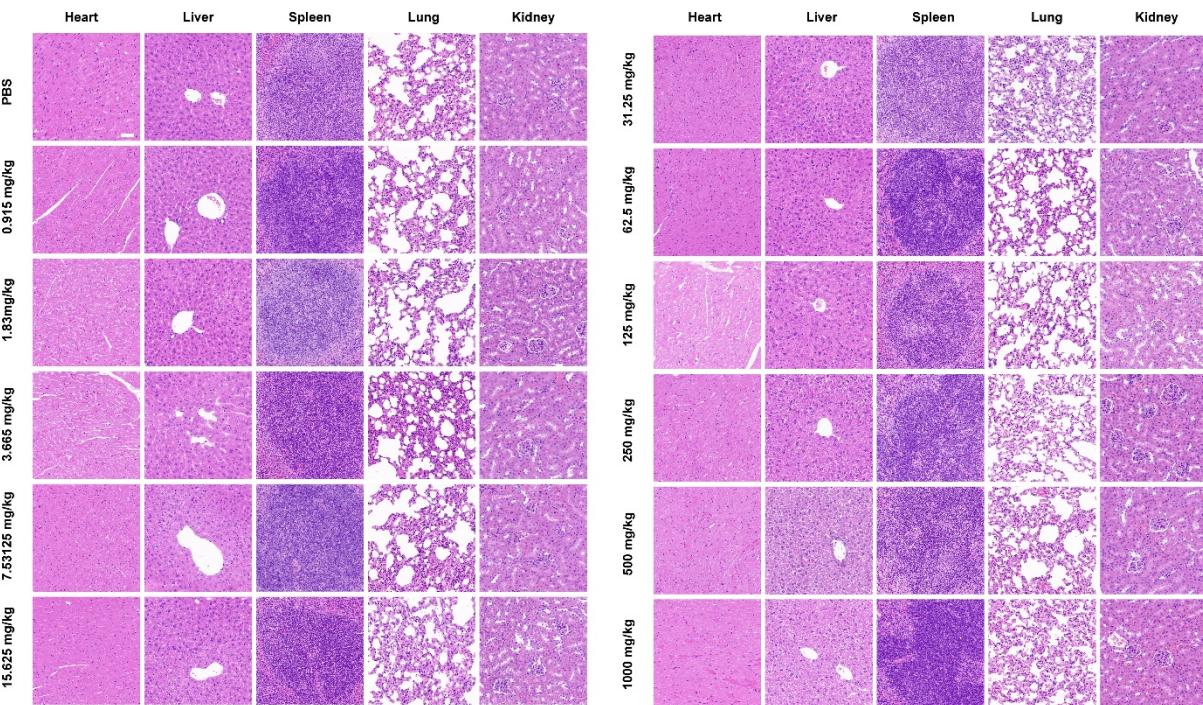
90 **Section S1.7 *In Vivo* Therapy**

91 Fifteen PD model mice were randomly divided into five groups (n = 3 per group) and treated
92 with intravenous ZnO@PDA (0.1 mL, 1 mg/mL) every three days for 30 days. The experimental
93 groups were ZnO@PDA + NIR + US (NM + L + U), ZnO@PDA + US + NIR (NM + U + L),
94 ZnO@PDA + NIR (NM + L), ZnO@PDA + US (NM + U), and ZnO@PDA only (NM). The
95 treatment protocols were as follows: 1) NM + L + U group: ZnO@PDA was intravenously
96 injected into the tail vein of mice. After 30 minutes, the treated area was irradiated with an
97 808 nm laser for 5 minutes (1.0 W/cm²), followed by ultrasound treatment for 10 minutes. 2) NM
98 + U + L group: ZnO@PDA was intravenously injected into the tail vein of mice. After 30
99 minutes, ultrasound treatment was administered for 10 minutes, followed by irradiation with an
100 808 nm laser for 5 minutes (1.0 W/cm²). 3) NM + L group: ZnO@PDA was intravenously
101 injected into the tail vein of mice. After 30 minutes, the treated area was irradiated with an
102 808 nm laser for 5 minutes (1.0 W/cm²). 4) NM + U group: ZnO@PDA was intravenously
103 injected into the tail vein of mice. After 30 minutes, ultrasound treatment was administered for
104 10 minutes. 5) NM group: ZnO@PDA was intravenously injected into the tail vein of mice. This
105 treatment regimen was repeated for all groups 4 hours post-administration. Three healthy mice
106 were randomly selected as the controls.

107

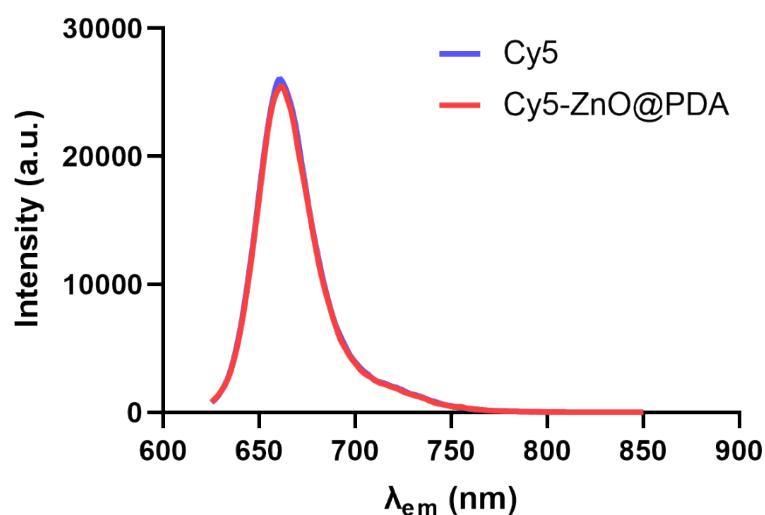

108 **Supporting Figure**

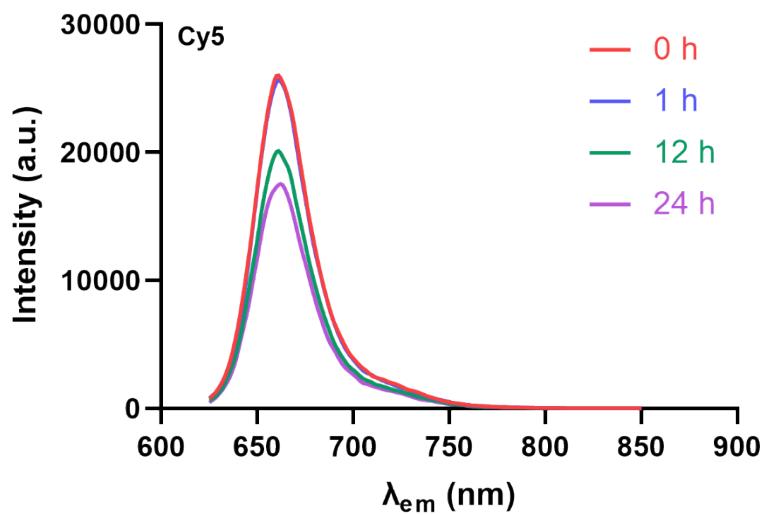
109 **Figure S1.** Stability assay of ZnO@PDA in serum over a period of 72 hours.


110

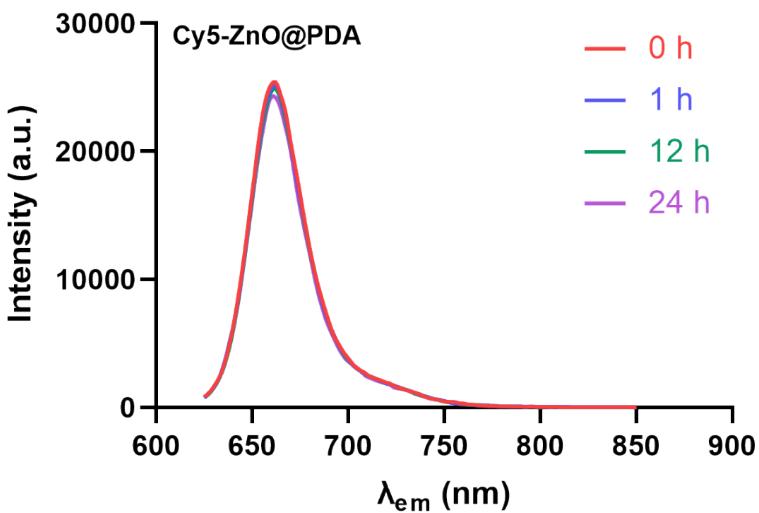
111

112 **Figure S2.** HUVECs after incubation with ZnO@PDA for 24 h by CCK8 assay.


113


114 **Figure S3.** Systematic dose-response study of ZnO@PDA in healthy mice.

115


116

117 **Figure S4.** Fluorescence spectra of Cy5 and Cy5-ZnO@PDA at the same concentration at the
118 initial stage.

120 **Figure S5.** Fluorescence spectra of Cy5 at different time points (0h, 1h, 12h, and 24h).

121

122 **Figure S6.** Fluorescence spectra of Cy5-ZnO@PDA at different time points (0h, 1h, 12h, and

123 24h).

124