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I. COMPUTATIONAL METHODS

The projector-augmented wave (PAW) derived core-valence interactions facilitated the
spin-polarized DFT simulations in Vienna Ab Initio Simulation Package VASP 6.4.2 code
[1H3]. The unit cells of BiOX (Fig. S3) consist of Bi (2), O (2), and X (2) atoms. Unless
stated otherwise, 2x 2x 2 supercells consisting of 48 atoms were considered for all simulations
presented here. The 15 electrons in Bi (5d'°6s%6p?), 6 electrons of O (2s22p*), 7 electrons
of Cl (3s%3p®), 7 electrons of Br (4s%4p®), and 7 electrons of I (5s?5p°) were considered as
valence in PAW, treating the remaining electrons as core. During relaxations, the threshold
for self-consistent electronic and Hellmann-Feynman ionic convergences were set to 1078
eV/atom and 1074 eV/A, respectively. The electronic eigenstates were represented by a
plane wave expansion with an energy cutoff of 580 eV. The 13 x 13 x 9 Monkhorst-Pack

(MP) k-mesh was used to perform Brillouin zone (BZ) integrations.

The DFT computational accuracies depend on the complexity of XCFs used to model
the unknown electronic interaction [4, [5]. Different XCFs like local density approximation
(LDA), GGA-PBE, GGA-PBE for solid (GGA-PBEsol), and Hubbard interaction-corrected
DFT+Ua+U, were implemented [6-13]. The long-range van der Waals (vdW) correction
with Becke-Johnson (BJ) damping at DFT-D3 level was invoked [14]. The spin-orbit cou-
pling (SOC) effect was considered to incorporate relativistic effects of the heavy Bi atom
[T4]. The screened hybrid functional Heyd—Scuseria—Ernzerhof (HSE06) was implemented
with Hartree-Fock (HF) exact-exchange mixing agr of 25% [15H22]. The vdW and SOC
were combined with HSE06 as HSE06+SOC, HSE06+vdW, and HSE06+vdW-+SOC. The
PBE-HFagr% was implemented where the exchange-correlation (XC) energy FXSF in terms

of short-range (SR) and long-range (LR) components of the HSE-screened approach as

EF = ane BTSN (1) 4 (1 — anp) BPPS (1)

+ BRI () + B () (81)

where = 0.2 A7 sets the standard screening level [16, 23H25]. The app was tuned along
with vdW and SOC to implement PBE-HF30%+vdW+SOC, PBE-HF21%+vdW+SOC,
and PBE-HF22%+vdW+SOC.

The parabolic fitting of conduction band (CB) and valence band (VB) extrema of the
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simulated electronic BS provided the carrier effective mass [26]. The carrier transport in
terms of conductivity, mobility, Seebeck coefficient, and electronic contribution to thermal
conductivity was characterized by solving Boltzmann transport equations from dense elec-
tronic DOS of PBE-HFapr%+vdW+SOC XCF and the Onsager coefficients in the Boltz-
TraP and AMSET codes [27, 28]. The constant relaxation time (CRT) approximation in
BoltzTraP assumed a CRT of 1 x 107 s. The scattering from acoustic deformation po-
tentials (ADPs), polar optical phonons (POPs), and ionized impurities (IMPs) were con-
sidered in AMSET codes. During lattice thermal conductivity estimation in Phono3py at
DFT+Ug+U, level, force constants (second and third order) were evaluated in a 4 x 4 x 4
supercell with 0.03 Adisplacements. The self-consistent energy and force convergences were
set to 1 x 107 eVA~1 and 1 x 1078 eV [29, B0]. A dense I' centered 21 x 21 x 21 point
mesh ensured the accuracy of the lattice thermal conductivities calculations. The harmonic
phonon modes were examined with the density functional perturbation theory (DFPT) and
a 4 x 4 x 4 supercell based finite difference method using Phonopy 2.22.1 [29, BTH33]. The
electronic DOS, BS, and complex dielectric constant derived optical properties were simu-
lated at LDA, GGA-PBE, GGA-PBE+vdW, GGA-PBEsol, and GGA-PBEsol+vdW. The
self-interaction error-prone band gap underestimation problem of these functionals was al-
leviated with DFT+Ugq+U, with adhoc Uy = 5 and 10 eV on Bi-5d and U, = 4 and 5
eV on O-2p, Cl-3p, Br-3p, and I-5p. For accurate electronic and optical properties, so-
phisticated XCFs like HSE06, HSE06+vdW, HSE06+SOC, HSE06+vdW+SOC, and PBE-
HFagr%+vdW+SOC were invoked. The convergence of computationally intense hybrid
XCFs-based BS simulations were ensured by Wannier interpolation implemented in the

WANNIER0 tool [16, 34-36].

The Raman tensor simulation at LDA, GGA-PBE, and GGA-PBEsol levels were carried
out in QUANTUM-ESPRESSO (QE 7.5) code [37-39]. The self-consistent relaxations were
subjected to 10~% eV/atom, 10~* eV/A, 580 eV, and 9 x 9 x 9 for electronic, force conver-
gences, plane wave cutoff, and MP k-mesh, respectively. The finite difference method (0.01
A atomic displacement) based derivative of the dielectric tensor yields the Raman tensor in

dynmat.x code.



II. MATERIALS SYNTHESIS

BiOCl. In the beginning, 5 mmol (2.2903 g) Bi(NO3)s.5H,O (99+% pure, Sigma)
was added in 7.5 mL acetic acid (100% pure, Sigma). After the complete dissolution of
Bi(NOj3)3.5H50, 60 mL methanol was mixed in the solution with 30 min of constant mag-
netic stirring (700 rpm). Subsequently, a white suspension was formed in the solution as
8.4 mL of 0.6M HCI (37% w/w, Sigma) was added dropwise into it. The pH was set to 5
by adding NH4,OH (25% w/w, Sigma) and the resulting white cloudy solution was stirred
for 30 min before loading into a Teflon-lined reactor inside a stainless steel autoclave to
react at 180 °C for 5 h inside an oven. After cooling down to room temperature, the white
precipitate obtained from the reactor was washed several times with nanowater (18 M),
7000 rpm, 6 cycles) and ethanol (7000 rpm, 6 cycles) and dried in air at 60 °C for 12 h to
produce the final BiOCI sample.

BiOBr. At first, 10 mmol (4.8507 g) Bi(NO3)3.5H20 and 10 mmol (1.19 g) of KBr (99+%
pure, Sigma) were completely dissolved in 70 mL of 0.1M HNOj3 (A) and 12 mL nanowater
(B), respectively by vigorous magnetic stirring (650 rpm) for 45 min. The aqueous B solution
was added dropwise into the A solution slowly and the resulting white mixture was subjected
to constant magnetic stirring for 1 h. The pH of this white solution was 1 and subsequently
transferred into the autoclave for hydrothermal reaction at 160 °C for 12 h inside an oven.
Following the natural cooling to ambient temperature, higher speed centrifugation (7000
rpm) with nanowater (5 cycles) and ethanol (5 cycles) removed the residual ions from the
precipitate before being subjected to drying in air for 12 h. The dried white BiOBr powder

is used for further characterization.

BiOLI. Initially, 4 mmol (1.9403 g) Bi(NOs3)3.5H50 was finely dissolved into 40 ml of
absolute ethanol (99+% pure, Sigma) through vigorous magnetic stirring and ultrasonication
(A). Next, 4 mmol (0.664 gm) KI (99+% pure, Sigma) was dissolved in 30 ml of nanowater
(B). Solution B was added dropwise into A under continuous stirring. The mixture turned
white with pH=1 and was gradually brought to pH = 8.8 by adding NH,OH. During the
pH adjustment, the white color turned brick red close to pH 7. The solution was heated
to 70 °C for 3 h. After natural cooling to room temperature, the dark red precipitate was

collected and subsequently washed in nanowater and ethanol. The red powder was dried at

80 °C for 24 h, and used as the final BiOI powder.
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III. PHOTOCATALYTIC SAMPLE PREPARATION

The RhB dye with a 10 ppm concentration was dissolved into 100 mL of nanowater. The
BiOX (X = Cl, Br, I) photocatalyst concentration was set to 1 g/L. The solution pH was
brought to 10 by adding the required NH;OH. The adsorption-desorption equilibrium was
attained with vigorous magnetic stirring in dark conditions for 60 min. During the optical
exposure, constant magnetic stirring eliminated the RhB dye concentration gradients capable
of inducing spurious catalytic effects. Depending on the reaction rate, UV-vis absorption

measurements were taken in 10 (BiOCL), 15 (BiOBr), and 30 (BiOI) min intervals.

IV. CHARACTERIZATION TECHNIQUES

The crystallographic information was obtained from powdered X-ray Diffraction (XRD)
measurements over angular range of 10° to 80° (Rigaku SmartLab SE Multipurpose, ac-
celerating voltage 40 kV and tube current 40 mA, Cu Ka A = 0.15418 nm X-ray source,
step size 0.02° and scan speed 2°/min). The Raman spectra were recorded using a 532
nm laser excitation by LabRAM HR Evolution Confocal Raman Microscope from Horiba
Scientific. The infrared absorptions were measured in a PerkinElmer Fourier Transform In-
frared (FTIR) spectrometer. The surface morphology, elemental and purity analysis were
facilitated in a Field Emission Scanning Electron Microscope (FESEM, JEOL 7610F) cou-
pled with an Energy Dispersive X-ray (EDX) spectrometer (JED 2300) and SEM from AVO
Research with EDX (EDAX Team). The chemical state analysis were performed with X-
ray Photoelectron Spectrometer (XPS, Thermo Fischer Scientific, 1486.69 eV Al Ka source
operating at 225 W). The C-1s XPS peak was adjusted to 284.8 eV for binding energy cal-
ibration. The Shimadzu UV-2600i UV-vis—NIR Spectrometer coupled with an integrating
sphere was used to perform diffuse reflectance spectroscopy (DRS). The room temperature
steady-state photoluminescence (PL) spectra were measured with Hitachi F-7000 Fluores-
cence Spectrophotometer (150 W Xe lamp and photomultiplier tube operating at 700 V).
The UV-vis absorptions in photocatalytic degradation measurements were obtained by a

Shimadzu UV-1900i spectrometer.



V. CRYSTALLOGRAPHIC INFORMATION

(a) o Biocl | ® o BiOBr
8 . Y,
5 @) Yobs | i Yobs
P T - Ycalc P 1 Ycalc
: N - - — it
;_/ S Yiire ;5/ 3 | Bragg Plane
e | Bragg Plane =l
=] =]
o 2
k= =
I (N 1 A I U T O HIRIN
I 0 A A (O I A O RN MBI WY .
" lL o A 'A‘ A A A
v W
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
20 (Degree) 26 (Degree)
(c) S BiOI
© Yobs
1 2 Ycalc
/,—_-? 1 Yiisr
S % =y | Bragg Plane
z =2
g % A S
- <t H AL
= ZREN 8RR
N i
V({1 (O R YIIN |
A.J R A
™Y

100 20 30 40 50 60 70 80
26 (Degree)

FIG. S1. Powder XRD data with Rietveld refinement for (a) BiOCl, (b) BiOBr, and (c) BiOI. The
experimental data Y5 were marked with yellow circles, refined patterns Y., were denoted by the
black solid line, and the bottom green curve represented the difference between Y, and Yeaic.



VI. ENERGY VERSUS VOLUME ANALYSIS
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FIG. S2. Energy E versus volume V curve of (a) BiOBr, and (b) BiOI for different DFT exchange-

correlation functionals (XCFs).
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FIG. S3. Unit cell of (a) BiOCl, (b) BiOBr, and (c) BiOI consisting of 6 atoms: Bi (2), O (2), and
X (2).
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VII. ELASTIC PROPERTIES

TABLE S4. Elastic constants (Cij), bulk moduli (By,, By and By;), shear moduli (Gy,, G, Gy),
Young’s moduli (Ey,, E,, E), Poisson’s ratio (I/V, Vg VH) and Pugh’s ratio (kPugh,V’ kPugh’R,
kPuth) in Voigt—Reuss—Hill framework for BiOCl using LDA, GGA-PBE, GGA-PBE+vdW,
GGA-PBEsol, GGA-PBEsol+vdW, and DFT+Uq+U, XCFs. The ); are the eigenvalues of tensor

ij”

Elastic Properties (E.P.) of BiOCI
E.P. LDA PBE PBE+vdW PBEsol PBEsol+vdW DFT+U4+U,

C1, (GPa) 150.1 116.0  133.9 137.3 148.1 129.1
Ci2 (GPa) 80.4 53.7 69.4 70.8 80.7 48.5
Ci3 (GPa) 46.7 13.3 37.2 34.0 49.4 31.1
Cs3 (GPa) 723 9.9 53.7 43.5 82.5 33.1
Cy (GPa) 30.2 124 26.2 25.6 32.4 23.9
Ces (GPa) 68.3 50.4 60.4 62.0 69.2 51.2
By (GPa) 80.0 44.7 67.7 66.2 81.9 56.9
Br (GPa) 654 9.8 50.4 42.3 71.4 32.9
By (GPa) 72.7 272 59.0 54.3 76.7 44.9
Gy (GPa) 39.0 25.8 34.4 34.6 40.1 31.8
Gr (GPa) 33.7 12.1 28.8 27.3 35.5 23.3
Gy (GPa) 36.3 18.9 31.6 30.9 37.8 27.6
Eyv (GPa) 100.7 64.9 88.3 88.4 103.4 80.5
Fr (GPa) 86.2 25.6 72.6 67.4 91.3 56.5
Fy (GPa) 93.4 46.1 80.5 77.9 97.3 68.7

vy 0.290 0.260  0.280 0.280 0.290 0.260

VR 0.280 0.062  0.260 0.235 0.287 0.214

Vi 0.286 0.218  0.273 0.261 0.288 0.246
kpughv  2.050 1.730  1.970 1.910 2.050 1.79
kpugnr  1.941 0.809  1.749 1.554 2.012 1.417
kpughu  2.001 1.438  1.868 1.756 2.030 1.632
A (GPa) 302 7.7 26.2 25.6 32.4 20.7
Ay (GPa) 302 124 26.2 25.6 32.4 23.9
As (GPa) 483 124 37.0 30.5 54.5 23.9
M\ (GPa) 683 50.4 60.4 62.0 67.4 51.2
X5 (GPa)  69.7 62.3 64.5 66.6 69.2 80.7
X¢ (GPa) 254.5 171.9  220.0 221.1 256.8 189.9
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TABLE S5. Elastic constants (Cij), bulk moduli (By,, By and By), shear moduli (Gy,, Gy, Gy),
Young’s moduli (E,;, Eg, E,;), Poisson’s ratio (VV, Vg vy) and Pugh’s ratio (kPugh,V’ kPugh’R,
kPuth) in Voigt—Reuss-Hill framework for BiOBr using LDA, GGA-PBE, GGA-PBE+vdW,
GGALPBESOI, GGA-PBEsol+vdW, and DFT+U4q+U, XCFs. The \; are the eigenvalues of tensor

ij”

Elastic Properties (E.P.) of of BiOBr
E.P. LDA PBE PBE+vdW PBEsol PBEsol+vdW DFT+U4+U,

C11 (GPa) 132.1 94.9 117.3 115.9 134.8 96.4
Cia (GPa) 68.6 40.3 58.2 55.5 73.4 35.2
Ci3 (GPa) 31.1 4.3 23.6 16.9 37.9 4.3
Cs3 (GPa) 34.8 5.8 28.2 16.8 47.8 4.9
Cy (GPa) 25.8 3.2 20.9 15.4 32.9 3.5
Ces (GPa) 61.6 42.2 53.5 53.8 65.3 41.2
By (GPa) 62.3 326 52.6 47.5 68.4 31.7
Br (GPa) 34.6 5.7 27.9 16.9 46.6 4.9
By (GPa) 484 19.2 40.3 32.2 57.5 18.3
Gy (GPa) 339 19.5 29.5 27.6 37.4 19.9
Gr (GPa) 25.1 5.2 21.7 16.5 29.9 5.3
Gy (GPa) 295 124 25.6 22.0 33.7 12.6
Ey (GPa) 859 488 74.6 69.3 94.9 49 .4
Er (GPa) 60.6 12.0 51.6 37.3 74.0 11.6
Ey (GPa) 73.5 305 63.4 53.8 84.6 30.7

vy 0.270 0.250  0.260 0.260 0.270 0.240

VR 0.208 0.150  0.191 0.132 0.235 0.101

Vi 0.247 0.234  0.238 0.222 0.255 0.220
kpughv ~ 1.840 1.670  1.780 1.720 1.830 1.590
kpughr  1.379 1.094  1.287 1.027 1.553 0.921
kpughu  1.644 1.550  1.572 1.463 1.707 1.452
A (GPa) 238 3.2 20.9 13.3 31.5 3.5
A» (GPa) 258 3.2 20.9 15.4 32.9 3.5
A3 (GPa) 258 5.5 21.0 15.4 32.9 4.57
M\ (GPa) 61.6 42.2 53.5 53.8 61.4 41.2
Xs (GPa) 635 54.7 59.1 60.4 65.3 61.2
X¢ (GPa) 211.6 135.6  182.7 174.9 224.4 131.8
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TABLE S6. Elastic constants (Cij), bulk moduli (By,, By and By), shear moduli (Gy,, Gy, Gy),
Young’s moduli (E,;, Eg, E,;), Poisson’s ratio (VV, Vg vy) and Pugh’s ratio (kPughV’ kPughR,
kPugh ) in Voigt—Reuss-Hill framework for BiOI using LDA, GGA-PBE, GGA-PBE+vdW, GGA-

PBEsol, GGA-PBEsol4+vdW, and DFT+4+Uq+U,, XCFs. The ); are the eigenvalues of tensor Cij.

Elastic Properties (E.P.) of BiOI
E.P. LDA PBE PBE+vdW PBEsol PBEsol+vdW DFT+U4+U,

C11 (GPa) 124.0 96.1 184.2 191.8 207.1 86.1
Cio (GPa) 60.1 39.0 131.8 136.1 154.2 28.9
Ci3 (GPa) 35.6 14.3 91.1 93.63 109.9 3.8
Cs3 (GPa) 474 252 130.9 124.9 178.5 4.6
Cu (GPa) 288 10.6 78.64 78.9 92.4 7.7
Ces (GPa) 54.8 39.9 122.4 126.8 143.7 34.8
By (GPa) 62.0 39.2 125.3 128.4 148.9 27.8
Br (GPa) 454 234 116.1 115.3 144.7 4.6
By (GPa) 53.7 31.3 120.7 121.8 146.9 16.2
Gy (GPa) 33.4 222 68.3 69.3 80.3 19.4
Gr (GPa) 279 15.3 48.9 49.0 56.4 7.6
Gy (GPa) 30.7 18.7 58.6 59.2 68.4 13.5
Ey (GPa) 85.0 56.0 173.4 176.2 204.2 47.2
Er (GPa) 69.5 37.6 128.8 128.8 149.8 14.8
Ey (GPa) 77.3 46.9 151.4 152.7 177.5 31.7

vy 0.270 0.260  0.270 0.270 0.270 0.22

VR 0.245 0.231  0.315 0.314 0.327 —0.031

Vi 0.260 0.250  0.291 0.291 0.299 0.175
kpughv ~ 1.860 1.770  1.830 1.850 1.860 1.440
kpughr  1.625 1.529  2.369 2.351 2.564 0.608
kpughum  1.750 1.670  2.057 2.059 2.148 1.203
A (GPa) 288 10.6 52.4 55.8 52.9 4.4
Xy (GPa) 28.8 10.6 64.8 59.6 89.6 7.7
A3 (GPa) 30.8 21.6 78.6 78.9 92.4 7.7
M\ (GPa) 548 39.9 78.6 78.9 92.4 34.8
X5 (GPa) 1224 57.1 122.4 126.8 143.7 57.2
X (GPa) 200.7 138.8  382.1 393.3 450.2 115.4
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VIII. RAMAN ANALYSIS

TABLE S7. Experimental (Exp.) room temperature Raman peaks of BiOCl compared against
those obtained from DFT simulations using LDA, GGA-PBE, and GGA-PBEsol XCFs. ISSM:
Internal Symmetric Stretching Mode, AVM: Antisymmetric Vibration Mode, and SSM: Symmetric
Stretching Mode.

Raman Peak Analysis of BiOCl
Exp. LDA GGA-PBE GGA-PBEsol

(em™) (em™)  (em™!) (cm™1) Symm. Peak Assignment
123(2) 136 118 131 A, Bi-ClISSM
147(2) 151 143 144 A, Bi-C1 ISSM
198(2) 207 202 198 E, Bi-Cl ISSM
300(2) 288 272 280 B Bi-O AVM
496(2) 509 494 408 E, Bi-O SSM
527(2) 528 512 511 E, Bi-O SSM

TABLE S8. Experimental room temperature Raman peaks of BiOBr compared against those
obtained from DFT simulations using LDA, GGA-PBE, and GGA-PBEsol XCFs. ISSM: Internal
Symmetric Stretching Mode, AVM: Antisymmetric Vibration Mode, and SSM: Symmetric Stretch-
ing Mode.

Raman Peak Analysis of BiOBr
Exp. LDA GGA-PBE GGA-PBEsol

(em™) (ecm™)  (em™!) (cm™!) Symm. Peak Assignment
112(2) 105 100 104 Ay Bi-Br ISSM
116(2) 114 113 114 A, BiBrlISSM
162(2) 150 147 149 E, Bi-Br ISSM
181(2) 183 187 184 E, Bi-Br ISSM
385(2) 387 391 387 By Bi-O AVM
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TABLE S9. Experimental (Exp.) room temperature Raman peaks of BiOI compared against
those obtained from DFT simulations using LDA, GGA-PBE, and GGA-PBEsol XCFs. ISSM:
Internal Symmetric Stretching Mode, AVM: Antisymmetric Vibration Mode, and SSM: Symmetric
Stretching Mode.

Raman Peak Analysis of BiOI
Exp. LDA GGA-PBE GGA-PBEsol

(em™) (em™)  (cm™1) (cm™1) Symm. Peak Assignment
67(2) 72 70 77 A, Bi-I ISSM
85(2) 83 79 89 Avg Bi-I ISSM
98(2) 96 99 100 Aig Bi-I ISSM
148(2) 115 . 142 E, Bi-I ISSM
591(2) 451 418 472 By, Bi-O AVM
1019(2)  — - - A, Bi-O SVM
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IX. FTIR ANALYSIS

TABLE S10. Experimental (Exp.) room temperature FTIR peaks of BiOCl compared against
those obtained from phonon DOS simulations using LDA, GGA-PBE, GGA-PBE+vdW, GGA-
PBEsol, GGA-PBEsol+vdW, and DFT+U4+U, XCFs. SVM: Stretching Vibration Mode and
BVM: Bending Vibration Mode.

FTIR Peak Analysis of BiOCl

Exp. LDA PBE PBE+vdW PBEsol PBEsol4+vdW DFT+Us+U,

(em™) (em™) (em™)  (em™!)  (em™Y) (em™1) (em™1) Peak Assign.
355(4) — 332 337 351 - Bi-O SVM
366(4) 363 — — — 362 361 Bi-O SVM
385(4) 413 383 - - - 381 Bi-O SVM
530(4) 500 — 476 487 500 Bi-O SVM
650(4)  — . - . . Bi-O SVM
T18(4) - . - - - Bi-O SVM
926(4) - - - - — Bi-O SVM
1016(4)  — - - - - Bi-C1 SVM
1305(4)  — - - - - Bi-Cl SVM
1332(4)  — - - - . Bi-C1 SVM
1396(4)  — . . . . Bi-Cl SVM
1534(4)  — - . - - Bi-Cl SVM
1620(4)  — - - - - O-H BVM
1720(4) — - — — - C=0 SVM
3544(4)  — — — — - O-H SVM
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TABLE S11. Experimental (Exp.) room temperature FTIR peaks of BiOBr compared against
those obtained from phonon DOS simulations using LDA, GGA-PBE, GGA-PBE+vdW, GGA-
PBEsol, GGA-PBEsol4+vdW, and DFT+Uy+U,, XCFs.

FTIR Peak Analysis of BiOBr

Exp. LDA PBE PBE+vdW PBEsol PBEsol+vdW DFT+Us4+U,

(em™) (em™) (em™)  (em™!)  (em™!) (em™!) (em™1) Peak Assign.
372(4) 354 377 376 385 — 368 Bi-O SVM
405(4) 396 415 401 418 390 410 Bi-O SVM
440(4) 441 442 439 441 433 440 Bi-O SVM
505(4) 481 460 462 473 480 Bi-O SVM
60(4) - - - . Bi-O SVM
870(4)  — _ - _ _ Bi-O SVM
1000(4)  — - - - - Bi-C1 SVM
1280(4)  — - - - - Bi-C1 SVM
1451(4)  — - - - - Bi-Cl SVM
1620(4) — - - - - O-H BVM
1720(4) - — _ _ _ C=0 SVM
3430(4)  — _ _ _ _ O-H SVM
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TABLE S12. Experimental (Exp.) room temperature FTIR peaks of BiOI compared against those
obtained from phonon DOS simulations using LDA, GGA-PBE, GGA-PBE+vdW, GGA-PBEsol,
GGA-PBEsol4+vdW, and DFT+U4+U,, XCFs.

FTIR Peak Analysis of BiOI

Exp. LDA PBE PBE+vdW PBEsol PBEsol+vdW DFT+Us4+U,

(em™) (em™) (em™)  (em™!)  (em™!) (em™!) (em™1) Peak Assign.
365(4) 372 367 — 362 372 360 Bi-O SVM
392(4) 400 398 — 392 395 391 Bi-O SVM
407(4) 412 405 — 405 414 408 Bi-O SVM
428(4) 431 422 — 418 421 420 Bi-O SVM
AT2(4) 454 — - 470 467 Bi-O SVM
612(4) - . . . . Bi-O SVM
750(4) - - - - - Bi-O SVM
815(4)  — - - - - Bi-O SVM
050(4)  — - - - - Bi-O SVM
1105(4)  — - - - - Bi-Cl SVM
1312(4) — - - - - Bi-Cl SVM
1382(4) — - - _ — Bi-Cl SVM
1615(4) - - - - O-H BVM
3427(4)  — - - - - O-H SVM
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X. PHONON VIBRATIONAL SPECTROSCOPY

FIG. S4. Phonon BS and DOS of Bi, O, and Cl atoms in BiOCI using DFPT at GGA-PBE level.
The phonon BS is simulated along A, I', M, R, X, and Z high symmetry k-points in BZ.
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FIG. S5. Phonon BS, total DOS, and partial DOS of Bi, O, and Cl atoms in BiOCl using 4 x 4 x 4
supercell based finite difference technique for (a) LDA, (b) GGA-PBE, (¢) GGA-PBE+vdW, (d)
GGA-PBEsol, and (e) GGA-PBEsol+vdW. The phonon BS is simulated along A, ', M, R, X, and

7 high symmetry k-points in BZ.
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FIG. S6. Phonon BS, total DOS, and partial DOS of Bi, O, and Br atoms in BiOBr using 4 x 4 x 4
supercell based finite difference technique for (a) LDA, (b) GGA-PBE, (c) GGA-PBE+vdW, (d)
GGA-PBEsol, and (e) GGA-PBEsol+vdW. The phonon BS is simulated along A, I, M, R, X, and
Z high symmetry k-points in BZ.
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FIG. S7. Phonon BS, total DOS, and partial DOS of Bi, O, and I atoms in BiOI using 4 x 4 x 4
supercell based finite difference technique for (a) LDA, (b) GGA-PBE, (¢) GGA-PBE+vdW, (d)
GGA-PBEsol, and (e) GGA-PBEsol+vdW. The phonon BS is simulated along A, I';, M, R, X, and
Z high symmetry k-points in BZ.
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XI. BORN CHARGE

The Born effective charge (BEC) embodies the atomic charge dynamics. The BEC has its

origin in the screening of long-range Coulomb potential of the ions whose motion forms the

phonon characteristics. The simulated BEC tensors were displayed in Table [S13] Table[S14]

and Table [S15

TABLE S13. Born effective charge tensor of BiOCI using 4 x 4 x 4 supercell based finite differ-
ence technique with LDA, GGA-PBE, GGA-PBE+vdW, GGA-PBEsol, GGA-PBEsol4+vdW, and

DFT+Ug+U, XCFs with NAC on.

XCF Zp Position  xx Xy Xz @ yX vy yz  7zX zZy 77
LDA Bi 2c 5.355 0.000 0.000 0.000 5.355 0.000 0.000 0.000 3.775
O 2a  —3.270 0.000 0.000 0.000 —3.270 0.000 0.000 0.000 —2.246
Cl  2¢ —2.085 0.000 0.000 0.000 —2.085 0.000 0.000 0.000 —1.529
GGA-PBE Bi 2c 6.230 0.000 0.000 0.000 6.230 0.000 0.000 0.000 4.241
O 2a  —3.266 0.000 0.000 0.000 —3.266 0.000 0.000 0.000 —1.728
Cl  2¢ —2.119 0.000 0.000 0.000 —2.119 0.000 0.000 0.000 —1.136
GGA-PBE+vdW Bi  2c 5.352 0.000 0.000 0.000 5.352 0.000 0.000 0.000 3.632
O 2a  —3.261 0.000 0.000 0.000 —3.261 0.000 0.000 0.000 —2.129
Cl  2¢c —2.091 0.000 0.000 0.000 —2.091 0.000 0.000 0.000 —1.503
GGA-PBEsol Bi 2c 5.370 0.000 0.000 0.000 5.370 0.000 0.000 0.000 3.549
O 2a  —3.270 0.000 0.000 0.000 —3.270 0.000 0.000 0.000 —2.111
Cl  2¢ —2.100 0.000 0.000 0.000 —2.100 0.000 0.000 0.000 —1.439
GGA-PBEsol+vdW Bi  2¢ 5.338 0.000 0.000 0.000 5.338 0.000 0.000 0.000 3.868
O 2a  —3.258 0.000 0.000 0.000 —3.258 0.000 0.000 0.000 —2.289
Cl  2¢  —2.080 0.000 0.000 0.000 —2.080 0.000 0.000 0.000 —1.579
DFTH+Uq+U, Bi 2c 5.400 0.000 0.000 0.000 5.400 0.000 0.000 0.000 3.501
O 2a  —3.319 0.000 0.000 0.000 —3.319 0.000 0.000 0.000 —1.955
Cl  2¢ —2.081 0.000 0.000 0.000 —2.081 0.000 0.000 0.000 —1.546
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TABLE S14. Born effective charge tensor of BiOBr using 4 x 4 x 4 supercell based finite differ-
ence technique with LDA, GGA-PBE, GGA-PBE+vdW, GGA-PBEsol, GGA-PBEsol4+vdW, and

DFT+Uq+U, XCFs with NAC on.

XCF Zp Position  xx Xy Xz @ yX vy vz  ZX  Zy 77
LDA Bi  2c 5.658 0.000 0.000 0.000 5.658 0.000 0.000 0.000 3.623
O 2a —3.509 0.000 0.000 0.000 —3.509 0.000 0.000 0.000 —2.367
Br  2c —2.149 0.000 0.000 0.000 —2.149 0.000 0.000 0.000 —1.256
GGA-PBE Bi 2 5.589 0.000 0.000 0.000 5.589 0.000 0.000 0.000 2.439
O 2a —3.463 0.000 0.000 0.000 —3.463 0.000 0.000 0.000 —1.612
Br 2c —2.126 0.000 0.000 0.000 —2.126 0.000 0.000 0.000 —0.826
GGA-PBE4+vdW Bi  2c 5.637 0.000 0.000 0.000 5.637 0.000 0.000 0.000 3.396
O 2a —3.484 0.000 0.000 0.000 —3.484 0.000 0.000 0.000 —2.195
Br  2c —2.153 0.000 0.000 0.000 —2.153 0.000 0.000 0.000 —1.200
GGA-PBEsol Bi 2 5.630 0.000 0.000 0.000 5.630 0.000 0.000 0.000 3.195
O 2a —3.487 0.000 0.000 0.000 —3.487 0.000 0.000 0.000 —2.097
Br  2c —2.143 0.000 0.000 0.000 —2.143 0.000 0.000 0.000 —1.098
GGA-PBEsol+vdW Bi  2¢ 5.665 0.000 0.000 0.000 5.665 0.000 0.000 0.000 3.867
O 2a —3.504 0.000 0.000 0.000 —3.504 0.000 0.000 0.000 —2.506
Br  2c —2.160 0.000 0.000 0.000 —2.160 0.000 0.000 0.000 —1.361
DFET+Uq+U, Bi 2c 5.624 0.000 0.000 0.000 5.624 0.000 0.000 0.000 2.405
O 2a —3.4864 0.000 0.000 0.000 —3.486 0.000 0.000 0.000 —1.589
Br  2c —2.138 0.000 0.000 0.000 —2.138 0.000 0.000 0.000 —0.817

TABLE S15. Born effective charge tensor of BiOI using 4 x 4 x 4 supercell based finite differ-
ence technique with LDA, GGA-PBE, GGA-PBE+vdW, GGA-PBEsol, GGA-PBEsol4+vdW, and

DFT+Uq+U, XCFs with NAC on.

XCF Zp Position  xx Xy Xz @ yX vy yz  7ZX 7y 77
LDA Bi 2c 6.132 0.000 0.000 0.000 6.132 0.000 0.000 0.000 3.924
O 2a  —3.949 0.000 0.000 0.000 —3.949 0.000 0.000 0.000 —2.773
I 2¢c  —2.183 0.000 0.000 0.000 —2.183 0.000 0.000 0.000 —1.151
GGA-PBE Bi 2c 6.007 0.000 0.000 0.000 6.007 0.000 0.000 0.000 3.172
O 2a  —3.844 0.000 0.000 0.000 —3.844 0.000 0.000 0.000 —2.202
I 2c  —2.162 0.000 0.000 0.000 —2.162 0.000 0.000 0.000 —0.970
GGA-PBE4+vdW Bi  2c 6.369 0.000 0.000 0.000 6.369 0.000 0.000 0.000 4.917
O 2a  —3.904 0.000 0.000 0.000 —3.904 0.000 0.000 0.000 —3.733
I 2c  —2.466 0.000 0.000 0.000 —2.466 0.000 0.000 0.000 —1.184
GGA-PBEsol Bi 2c 6.392 0.000 0.000 0.000 6.392 0.000 0.000 0.000 4.811
O 2a  —3.934 0.000 0.000 0.000 —3.934 0.000 0.000 0.000 —3.700
I 2c  —2.458 0.000 0.000 0.000 —2.458 0.000 0.000 0.000 —1.111
GGA-PBEsol+vdW Bi  2c 6.377 0.000 0.000 0.000 6.377 0.000 0.000 0.000 5.214
O 2a  —3.936 0.000 0.000 0.000 —3.936 0.000 0.000 0.000 —4.022
I 2c  —2.441 0.000 0.000 0.000 —2.441 0.000 0.000 0.000 —1.191
DFETH+Uq+U, Bi 2c 5.944 0.000 0.000 0.000 5.944 0.000 0.000 0.000 2.437
O 2a  —3.812 0.000 0.000 0.000 —3.812 0.000 0.000 0.000 —1.686
I 2c  —2.131 0.000 0.000 0.000 —2.131 0.000 0.000 0.000 —0.751
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XII. EDX ANALYSIS

TABLE S16. Bi, O, Cl, Br and I element identification, atomic percentage at. (%) and weight
percentage wt. (%) concentration analysis of BiOCl, BiOBr, and BiOI using EDX (Model: EDAX
Team).

EDX Analysis of BiOCI, BiOBr, and BiOI

at. (%) at. (%) wt. (%) wt. (%)

Sample Element (Theory) (Exp.) (Theory) (Exp.)
BiOCl Bi 33.33 29.90 80.25 79.74
O 33.33 45.50 6.14 9.63

Cl 33.34 24.60 13.61 10.63

BiOBr Bi 33.33 30.70 68.54 68.07
O 33.33 39.50 5.25 7.75

Br 33.34 29.80 26.21 25.18

BiOl Bi 33.33 37.79 59.39 99.25
O 33.33 27.08 4.55 3.44

I 33.34 37.13 36.06 37.31
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FIG. S10. EDX spectra of (a) BiOCI, (b) BiOBr, and (c) BiOI.
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XIII. OPTICAL PROPERTIES
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FIG. S11. Real part of the dielectric constant €., of (a) BiOBr, and (b) BiOI as a function of

photon energy for different XCFs.
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FIG. S12. Imaginary part of the dielectric constant eimag of (a) BiOBr, and (b) BiOI as a function

of photon energy for different XCF's.
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FIG. S13. Experimental and simulated optical absorption for (a) BiOBr, and (b) BiOI for different
XCFs.
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FIG. S14. Experimental and simulated Tauc plots for (a) BiOBr, and (b) BiOI for different XCFs.
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FIG. S15. Linear optical properties: (a) reflectance (R), (b) loss function (L), (c) refractive index
(n), (d) extinction coefficient (K), and (e) optical conductivity (o) of BiOCI for different XCFs.
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FIG. S16. Linear optical properties: (a) reflectance (R), (b) loss function (L), (c¢) refractive index
(1), (d) extinction coefficient (K), and (e) optical conductivity (o) of BiOBr for different XCFs.
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FIG. S17. Linear optical properties: (a) reflectance (R), (b) loss function (L), (c) refractive index
(1), (d) extinction coefficient (K), and (e) optical conductivity (o) of BiOI for different XCFs.
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XIV. ELECTRONIC PROPERTIES

TABLE S17.  Electronic band gap E, estimation of BiOX (X = Cl, Br, and I) estimated from
density of states (DOS) and band structure (BS) for different XCFs.

Electronic Band Gap Analysis

E, (eV) of BiOCl E, (eV) of BiOBr E, (eV) of BiOI
Functional Exp. DOS BS Exp. DOS BS Exp. DOS BS
3.54 — — 2.83 — — 1.85 — —
LDA — 2.39 2.54 — 1.85 2.01 — 1.21 1.39
GGA-PBE — 2.44 2.60 — 2.15 2.33 — 0.87 1.51
GGA-PBE+vdW — 2.51 2.65 — 1.98 2.17 — 1.04 1.17
GGA-PBEsol — 2.37 2.52 — 1.94 2.11 — 0.87 0.98
GGA-PBEsol+vdW — 2.44 2.60 — 1.86 2.04 — 1.02 1.18
GGA-PBE+U4 + U, — 3.37 3.53 — 2.66 2.85 — 1.67 1.83
HSEO06 — 3.39 3.60 — 3.01 3.26 — 2.07 2.29
HSE06-+vdW — 3.39 3.60 — 3.03 3.26 — 2.07 2.29
HSE06+SOC — 3.15 3.36 — 2.74 2.98 — 1.73 1.95
HSE06+vdW+SOC — 3.14 3.36 — 2.76 2.98 — 1.72 1.95
PBE-HF30%+vdW+SOC — 3.41 3.56 — — — — — —
PBE-HF22%+vdW+SOC — — — — 2.69 2.86 — — —
PBE-HF21%+vdW+SOC — — — — — — — 1.61 1.82
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FIG. S18. Electronic BS of cubic BiOCl along A, I', M, R, X, and Z high symmetry points in BZ
for (a) LDA, (b) GGA-PBE, (¢) GGA-PBE+vdW, (d) GGA-PBEsol, and (e) GGA-PBEsol+vdW
XCFs.

35



Eg =2.33¢eV CBM VBM

r X M r z R A zZ r X M rz R A

V4

BiOBr GGA-PBE+vdW BiOBr GGA-PBEsol

r X M TZ R A Z I X M TZ R A
k-points in ]632 k-points in BZ

IGGIA-PBEISOI-FVdIW

r X M rz R A Z
k-points in BZ

FIG. S19. Electronic BS of cubic BiOBr along A, I', M, R, X, and Z high symmetry points in BZ
for (a) LDA, (b) GGA-PBE, (¢) GGA-PBE+vdW, (d) GGA-PBEsol, and (¢) GGA-PBEsol4+vdW
XCFs.
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FIG. S20. Electronic BS of cubic BiOI along A, I', M, R, X, and Z high symmetry points in BZ
for (a) LDA, (b) GGA-PBE, (c) GGA-PBE+vdW (d) GGA-PBEsol, and (e¢) GGA-PBEsol+vdW
XCFs.
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FIG. S21. Electronic BS of (a) BiOCl, (b) BiOBr, and (c) BiOI along A, I, M, R, X, and Z high
symmetry points in BZ for DFT4+Uyq+U, XCF.
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FIG. S22. Electronic BS of cubic BiOCl along A, I', M, R, X, and Z high symmetry points in BZ
for (a) HSEO06, (b) HSE06+vdW, (¢) HSE06+SOC, and (d) HSE064+vdW+SOC XCFs.
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FIG. S23. Electronic BS of cubic BiOBr along A, I', M, R, X, and Z high symmetry points in BZ
for (a) HSE06, (b) HSE06+vdW, (c¢) HSE064+-SOC, and (d) HSE06+vdW+SOC XCFs.
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FIG. S24. Electronic BS of cubic BiOI along A, I', M, R, X, and Z high symmetry points in BZ
for (a) HSE06, (b) HSE06+vdW, (c¢) HSE06+SOC, and (d) HSE06+vdW+SOC XCFs.
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FIG. S25. Total density of states (TDOS) and its projections on different orbitals of Bi, O, and
Cl of BiOCl for (a) LDA, (b) GGA-PBE, (¢c) GGA-PBE+vdW, (d) GGA-PBEsol, and (e) GGA-
PBEsol+vdW XCFs.
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FIG. S26. Total density of states (TDOS) and its projections on different orbitals of Bi, O, and Cl
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45



(@) 8 BiOI ——TDOS —— 15 0-2s | (b) 8 BiOI ——TDOS —— 55 0-2s
6 —B%—6s I-5p ——0-2p 6- —— Bi-6s I-5p——0-2p
% :g;-gg ——14d ~ —Ei-gg ——14d
S~ |1- 8 _| i-

& 4+ | & I
s [ s |
2 2 - I Z) I

»n I n |
8 4| !
g0 . g -

c.(/_‘J I w2 1

. : E |
2 >
@ -4 I : Z I
é) Il | 5 I :

-6 e—> E =121eV |R -6 > £ =0.87 eV
LDA o E ot
-8 | | I [ : g GGA-PBE L
-6 -4 -2 0 2 4 6 -6 -4 2 0 2 4 6
. E-E; (eV) E-E (eV)

(©) BiOI :E?S —{zs —8:55 (d) 8 BiOI —— TDOS —— 155 0-2s
. 6 | 1 S P p 6 | —— Bi-6s I-5p——0-2p
°>) —— Bi-6p ——I-4d S\ —— Bi-6p ——1-4d
> . IC) ——Bi-5d
g+ . g 4- "
+~ I s
2+ ! \r%i 21 :

8 | 3 '
g0 | 15 04 |
) | 2
g -2 [ 5 -2 :

& ! > !
g _4 i : = _4 i |
g " | g ] |
A -6- > £ =1.04 eV A -6 >l E, =
> E, =1 I Eg =0.87 eV
3 GGA-PBE+vdW L ‘ GGA-PBEsol :: :
6 4 2 0 2 4 6 6 a4 5 0o 2 4
E-E; (eV) E-E; (eV)

(e) BiOI —— TDOS —— I-5s 0-2s
—— Bi-6s I-5p——O0-2p
——Bi-6p ——I-4d
——Bi-5d

Density of States (States/eV)

S A LV o N A~ o
| I I R R S R— |

GGA-PBEsol+vdW

oo
:H: Eg =1.02eV
!
T

6

FIG. S29. TDOS and its projections on different orbitals of Bi, O, and I of BiOI for (a) LDA, (b)
GGA-PBE, (¢) GGA-PBE+vdW, (d) GGA-PBEsol, and (¢) GGA-PBEsol+vdW XCFs.

46




(@) © |BiOI TDOS I-5s 0-2s| (b) © |BiOI TDOS I-55 0-2s
6 - Bi-6s I-5p 0O-2p 6 Bi-6s I-5p O-2p
Bi-6p —— I-4d ——Bi-tp ——I-4d

—— Bi-5d

Bi-5d

Density of States (States/eV)
(e

2
4
Il |
-6 <« ,=2.07eV |~ 07 e——>1 E,=2.07 eV
o [HSEO6 ! g JHSE06+vdW g :
-6 - - 0 2 4 6 -6 -4 -2 0 2 4 6
s E-E; (eV) s E-E; (eV)
(©) BiOI TDOS I-5s 0-2s| (d) BiOI TDOS I-5s 0-2s
Bi-6s I-5p 0-2p Bi-6s I-5p 0-2p
10 - —Bi-6p ——I-4d 104 Bi-6p —— I-4d

Density of States (States/eV)
Density of States (States/eV)

-10 - I [
€<—>1 Eg =1.72eV
I

| |
| |
-6 -4 -2 0 2 4 6 -6 -4 2 0 2 4 6

FIG. S30. TDOS and its projections on different orbitals of Bi, O, and I of BiOI for (a) LDA, (b)
GGA-PBE, (¢) GGA-PBE+vdW, (d) GGA-PBEsol, and (e¢) GGA-PBEsol+vdW XCFs.
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FIG. S31. TDOS and its projections on different orbitals of Bi, O, and X of (a) BiOC]l, (b) BiOBr,
and (c) BiOI for DFT+Uq+U, XCF.
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XV. EFFECTIVE MASS ANALYSIS

TABLE S18. Effective masses my,, my,,

mass mg along different spatial z, y, and z directions of BiOX (X = Cl, Be, and I) for different
functionals.

and m;, of electron and hole in the units of free electron

Effective mass analysis

BiOCl
Elctron Hole
Functional my/mo  my./mo  my,/mo  Avg. mi/mo my /mo m;,/mo Avg.
LDA 0.26 0.26 0.44 0.32 0.80 0.80 2.74 1.45
GGA-PBE 0.25 0.25 1.44 0.65 0.86 0.86 2.97 1.56
GGA-PBE+vdW 0.27 0.27 0.61 0.38 0.94 0.94 3.22 1.70
GGA-PBEsol 0.25 0.25 0.55 0.35 0.84 0.84 2.78 1.48
GGA-PBEsol+vdW 0.26 0.26 0.42 0.32 0.85 0.85 2.54 1.41
PBE-HF30%+vdW+SOC 0.22 0.22 1.14 0.53 0.81 0.81 2.98 1.53
BiOBr
Elctron Hole
Functional my/mo  my./mo  my,/mo  Avg. mi/mo my /mo m;,/mo  Avg.
LDA 0.22 0.22 1.06 0.50 0.68 0.68 1.72 1.02
GGA-PBE 0.23 0.23 3.5 1.32 1.25 1.25 3.04 1.85
GGA-PBE+vdW 0.23 0.23 1.80 0.75 0.88 0.88 2.16 1.31
GGA-PBEsol 0.20 0.20 1.70 0.70 0.76 0.76 1.85 1.12
GGA-PBEsol+vdW 0.24 0.24 0.92 0.47 0.69 0.69 1.72 1.03
PBE-HF22%+vdW+SOC 0.19 0.19 8.78 3.05 1.14 1.14 7.48 3.26
BiOl
Elctron Hole
Functional mi/mo  my,/mo  my,/mo  Avg. mi . /mo mj,/mo m;,/mo  Avg.
LDA 0.19 0.19 1.84 0.75 0.52 0.52 0.70 0.58
GGA-PBE 0.16 0.16 1.04 0.46 0.58 0.58 2.04 1.06
GGA-PBE+vdW 0.30 0.30 0.24 0.28 0.57 0.57 0.61 0.58
GGA-PBEsol 0.25 0.25 0.21 0.24 0.52 0.52 0.54 0.52
GGA-PBEsol+vdW 0.43 0.43 0.26 0.37 0.47 0.47 0.57 0.50
PBE-HF21%+vdW+SOC 0.17 0.17 5.64 1.99 0.83 0.83 3.24 1.67
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XVI. CARRIER TRANSPORT
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FIG. S32. Average temperature-dependent scattering rates of (a) BiOBr, and (b) BiOI for IMP,
ADP, POP, and CRT. Scattering rates are averaged over k-points in BZ and Fermi-Dirac distribu-

tion derivatives.
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FIG. S33. Average carrier concentration-dependent scattering rates of (a) BiOBr, and (b) BiOI
for IMP, ADP, POP, and CRT. Scattering rates are averaged over k-points in BZ and Fermi-Dirac
distribution derivatives.
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FIG. S34. Spatially averaged p-type conductivity (o) of (a) BiOCIl, (b) BiOBr, and (c) BiOI;
mobility (u) of (d) BiOCI, (e) BiOBr, and (f) BiOI; power factor (S%¢) of (g) BiOCI, (h) BiOBr,
and (i) BiOI as a function of temperature for different carrier concentrations.
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FIG. S35. Spatially averaged Seebeck coefficient (S) of (a) BiOBr, and (b) BiOI as a function of
temperature for different carrier concentrations.
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FIG. S36. Spatially averaged electronic contribution to thermal conductivity (k) of (a) BiOBr,
and (b) BiOI as a function of temperature for different carrier concentrations.
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XVII. ELECTRONIC BAND-EDGE ANALYSIS

TABLE S19. Experimental (Exp.) and DFT (DFT+Uq+U,, HSE06, HSE064+vdW+SOC, and
PBE-HFayr%+vdW+SOC XCFs) simulated electronic band edges Eypym and Ecpy of BiOX (X
= Cl, Br, I), calculated from Mullikan electronegativity x, band gap Ej, and free energy of electron

FEe.
Electronic Band-edge Analysis
BIOCI/DFT X (eV) Eg (QV) Ee (eV) EVBM (GV) ECBM (GV)
Exp. 6.43 3.54 4.44 0.04 3.57
GGA-PBE+U4 + U, 6.43 3.53 4.44 0.04 3.57
HSE06 6.43 3.60 4.44 0.00 3.60
HSE06+vdW+SOC 6.43 3.36 4.44 0.12 3.48
PBE-HF30%+vdW+SOC 6.43 3.56 4.44 0.02 3.58
BiOBr/DFT
Exp. 6.24 2.83 4.44 0.39 3.22
GGA-PBE+U4 + U, 6.24 2.85 4.44 0.38 3.23
HSE06 6.24 3.26 4.44 0.17 3.43
HSE06+vdW+SOC 6.24 2.98 4.44 0.31 3.29
PBE-HF22%+vdW+SOC 6.24 2.86 4.44 0.37 3.23
BiOI/DFT
Exp. 6.01 1.83 4.44 0.89 2.72
GGA-PBE+U4 + U, 6.01 2.83 4.44 0.89 2.72
HSE06 6.01 2.29 4.44 0.66 2.95
HSE06+vdW+SOC 6.01 1.95 4.44 0.83 2.78
PBE-HF21%+vdW+SOC 6.01 1.82 4.44 0.89 2.7

XVIII. REDOX POTENTIAL ANALYSIS

TABLE S20. Redox potential (R.P.) V analysis concerning normal hydrogen electrode (NHE) for

relevant photocatalytic reactions.

Redox Potential (R.P.) Analysis

Reaction R.P. R.P. R.P.
(pH = 0) (pH = 2) (pH = 10)
Oy +e —-0, —0.18 —0.29 —0.77
2H' + Oy + 2¢~ — H,0, 0.695 0.577 0.105
H,05 +H" +e¢~ — -OH™ + H,0O 0.8 0.68 0.21
OH™ — «OH + e~ 1.99 1.87 1.4
H,O — -OH+H" 4+ ¢~ 2.73 2.61 2.14
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