

1

Supplementary Information

2 One-Step, Efficient and Sustainable Microwave-Assisted Biodiesel 3 Production Using a Sulfonated Porous Organic Polymer Catalyst

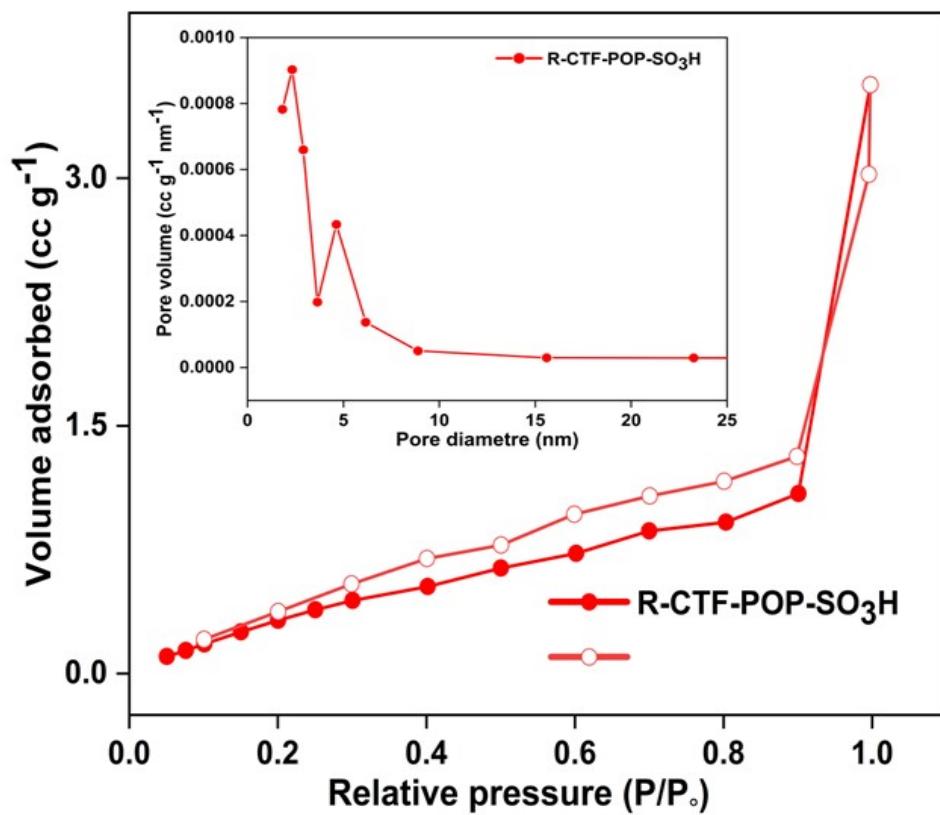
4 *Biman Kaushik^a, Shikhasmita Das^a, Sanjay Basumatary^b, Ruma Rano^a, Hui Li^c, Jasha Momo*
5 *H. Anal^d, Gopinath Halder^e, Samuel Lalthazuala Rokhum^{a*}*

6 ^a *Department of Chemistry, National Institute of Technology Silchar, Silchar 788010, Assam,*
7 *India*

8 ^b *Department of Chemistry, Bodoland University, Kokrajhar, 783370, Assam, India*

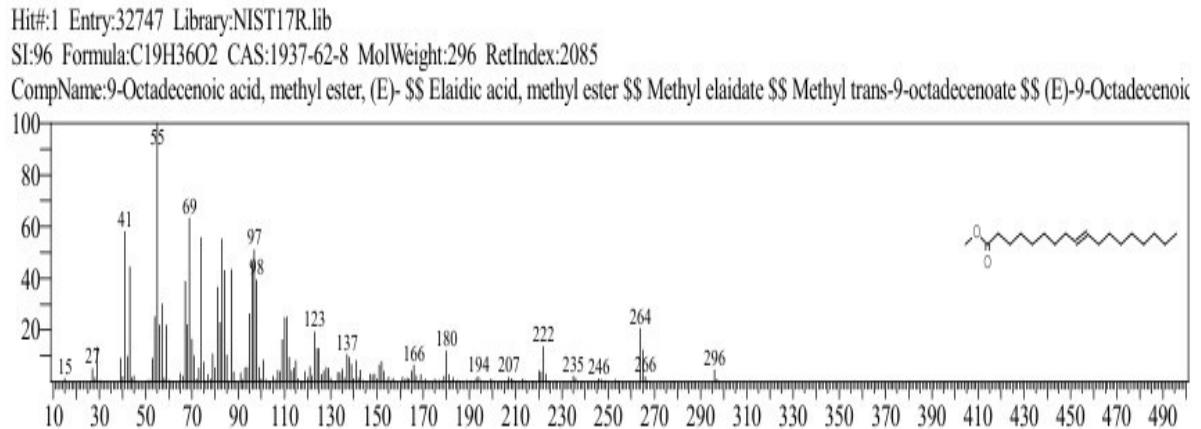
9 ^c *School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, PR China*

10 ^d *Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative*
11 *Medicine, Jammu, Jammu and Kashmir, 180001 India*


12 ^e *Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur*
13 *713209, West Bengal, India*

14 *Corresponding author's email: rokhum@che.nits.ac.in (SLR)*

15


Sl. No	Caption	Figures
1	BET and pore size distribution of recovered catalyst	Fig. S1
2	Mass spectra of bio-diesel (methyl oleate)	Fig. S2
3	Reaction parameters influence on biodiesel conversion	Fig. S3
4	SEM-EDS spectrum of reused catalyst	Fig. S4
5	Single-factor optimization of biodiesel using CTF-POP-SO ₃ H catalyst.	Table S1
6	General plausible mechanism of esterification of oleic acid	Fig. S5
7	An expansion of the α -CH ₂ region showing triplets due to minor residual starting material (OA) at 2.37 ppm	Fig. S6
8	Cost of catalyst for 1 kg biodiesel	Table S2
9	Cost of 1 kg biodiesel from oleic acid by using microwave irradiation	Table S3

16

Fig. S1: BET and pore size distribution of recovered catalyst (R-CTF-POP-SO₃H)

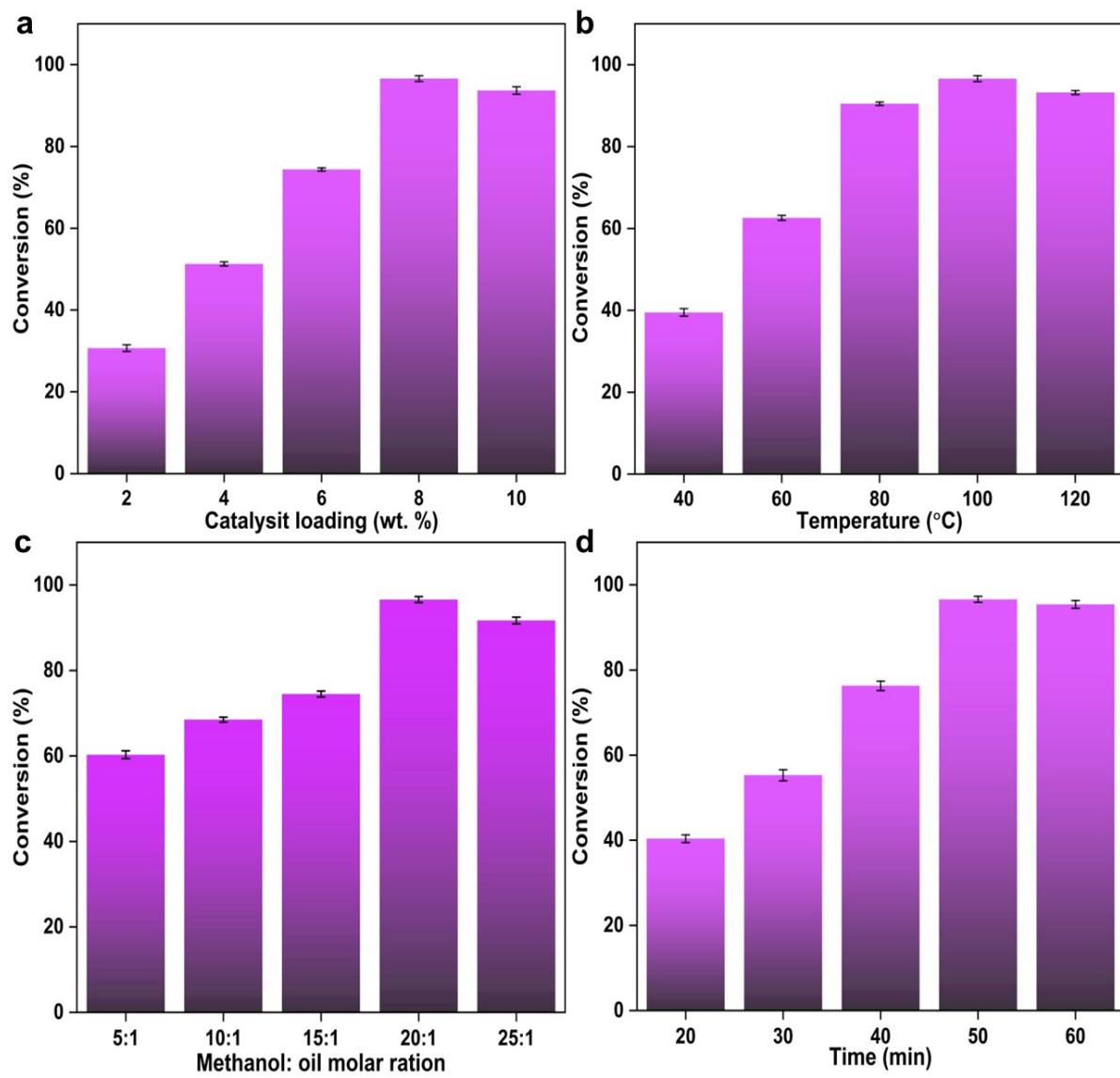
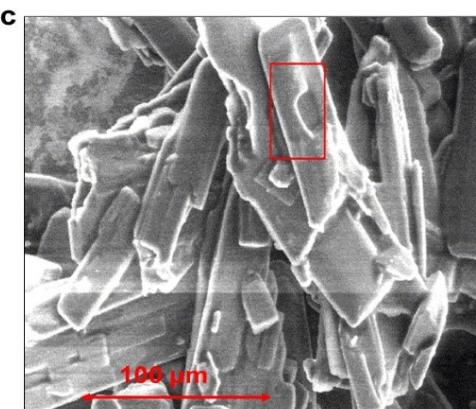
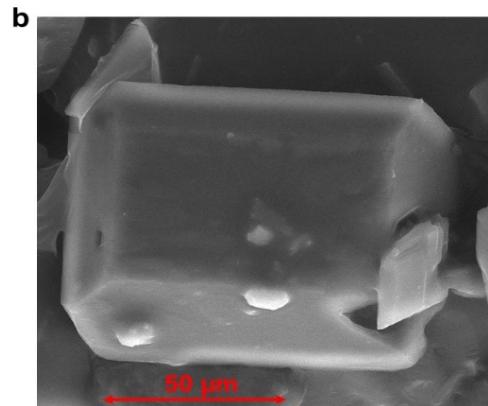
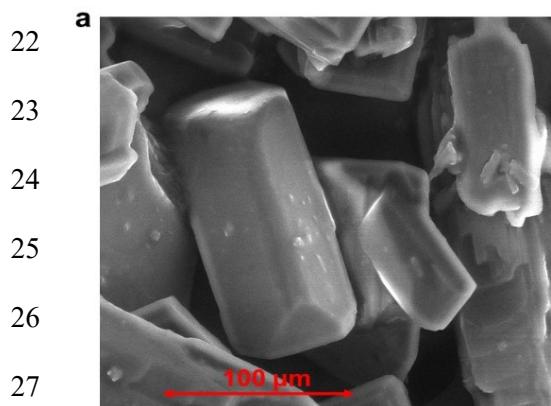

17

Fig. S2: Mass spectra of biodiesel (methyl oleate) eluted under optimized conditions.




18

19

Fig S3: Reaction parameters influence on biodiesel conversion-(a) Catalyst loading, (b) Temperature, (c)MOMR, (d) reaction time.

21

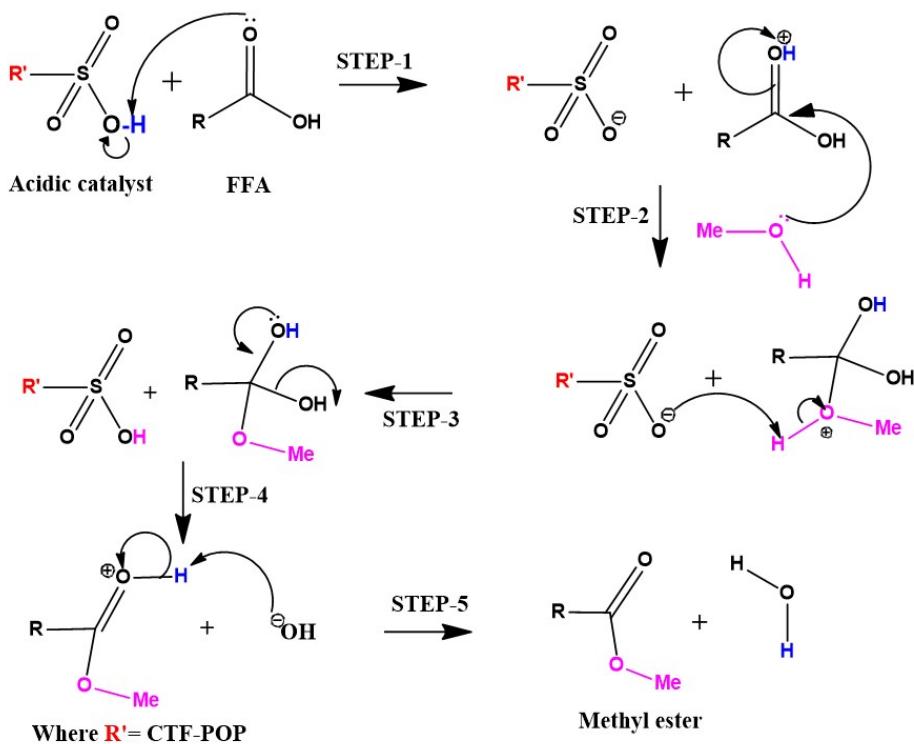
Fig. S4: SEM images of (a-c) recovered catalyst R-CTF-POP-SO₃H along with the EDX data (d) for the region highlighted in the red box in (c).

Table S1. Single-factor optimization of biodiesel using CTF-POP-SO₃H catalyst.

Catalyst loading (wt. %)	Temperature (°C)	Methanol to Oil Ratio	Time (min)	Conversion (%)
2	100	20:1	50	30.7 ± 0.8
4	100	20:1	50	51.3 ± 0.5
6	100	20:1	50	74.4 ± 0.4
8	100	20:1	50	96.6 ± 0.7
10	100	20:1	50	93.7 ± 0.9
8	40	20:1	50	39.5 ± 0.9
8	60	20:1	50	62.6 ± 0.6
8	80	20:1	50	90.5 ± 0.4
8	100	20:1	50	96.6 ± 0.7
8	120	20:1	50	93.2 ± 0.5
8	100	5:1	50	60.3 ± 0.9
8	100	10:1	50	68.5 ± 0.6
8	100	15:1	50	74.5 ± 0.7

8	100	20:1	50	96.6 \pm 0.7
8	100	25:1	50	91.7 \pm 0.8
8	100	20:1	20	40.4 \pm 0.9
8	100	20:1	30	55.3 \pm 1.3
8	100	20:1	40	76.3 \pm 1.1
8	100	20:1	50	96.6 \pm 0.7
8	100	20:1	60	95.4 \pm 0.9

33


$$Mean(\bar{x}) = \frac{\sum x_i}{n} \quad \text{Eq. S1}$$

$$SD = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} \quad \text{Eq. S2}$$

34 where n = no of experiments. x_i = each value. \bar{x} = mean for one optimized parametre.

35 SD = Standard Deviation

36 At the optimum condition (8 wt % catalyst loading, 100 °C temperature, 20: 1 MOMR, 50 min
 37 reaction time), the reaction was performed three times. So, for this we got 96.6 % mean and
 38 0.7 % standard deviation.

Fig. S5: Esterification of free fatty acid (oleic acid) to methyl ester (methyl oleate).

39 Mechanistic pathway:

40 The plausible reaction mechanism for the microwave-assisted esterification of oleic acid with
 41 methanol using CTF-POP- SO_3H as catalyst is illustrated in **Fig. S5** and proceeds through the
 42 following elementary steps:

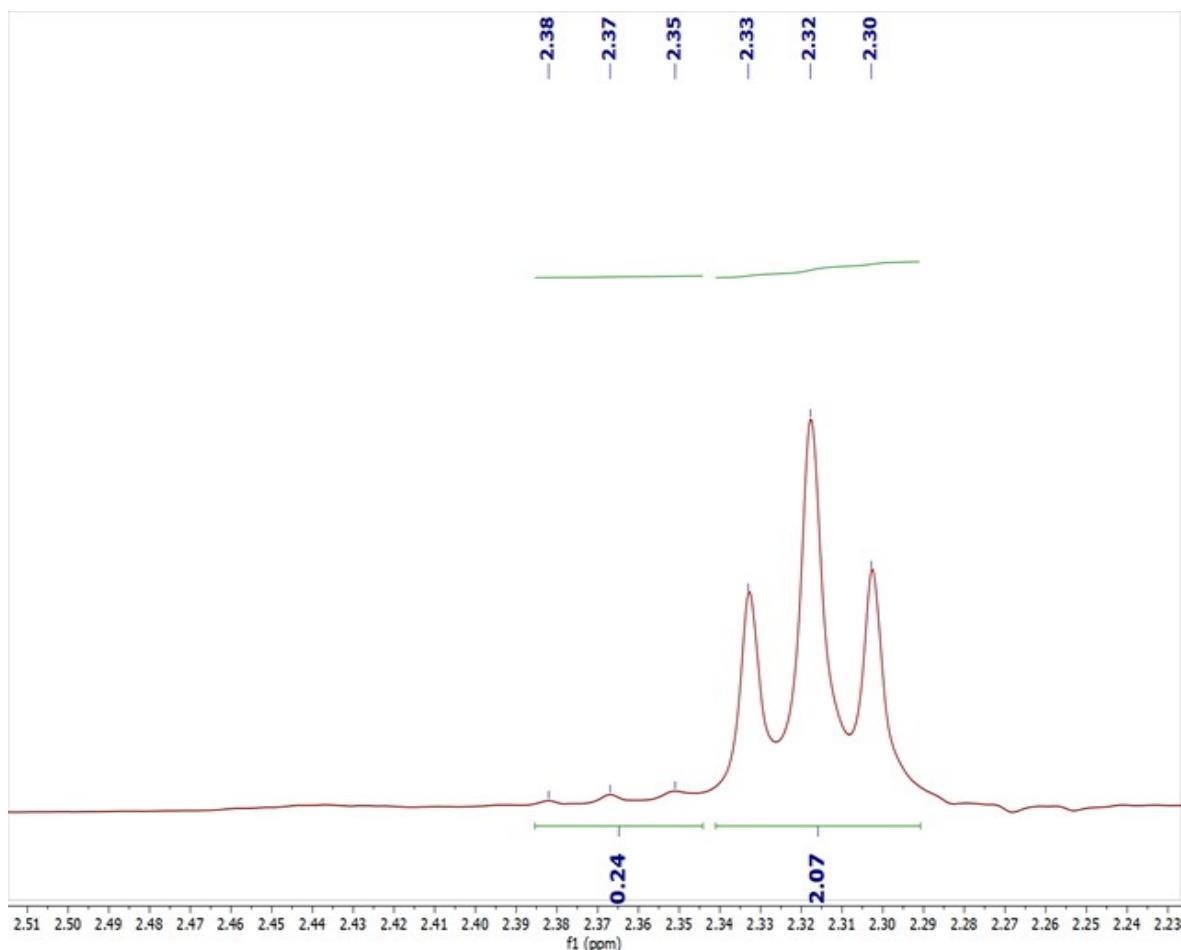
43 1. Activation of Oleic Acid:

44 The Brønsted acidic $-\text{SO}_3\text{H}$ sites of the CTF-POP- SO_3H catalyst protonate the carbonyl
 45 oxygen of oleic acid ($\text{R}-\text{COOH}$), thereby increasing the electrophilicity of the carbonyl
 46 carbon.

47 2. Activation of Methanol and nucleophilic attack:

48 Methanol is activated through hydrogen bonding and subsequently attacks the
 49 protonated carbonyl carbon to form a tetrahedral intermediate.

50 3. Catalyst Regeneration:


51 The $-\text{SO}_3\text{H}$ site is regenerated by releasing the proton consumed in the first step.

52 4. Proton Transfer and Water Elimination:

53 Step 4 and 5 involves proton transfer and the elimination of water, leading to the
 54 formation of methyl ester, thus completing the catalytic cycle.

55 **Microwave-Assisted synergy:** Microwave irradiation speeds up the process by heating
 56 the whole volume evenly via the dipolar rotation of methanol and the polarization of sulfonic
 57 acid groups. This microwave-acidic-site synergy speeds up proton transfer and the creation of
 58 intermediates, leading to full conversion in 50 minutes, which is much quicker than traditional
 59 thermal approaches.

60

Fig S6: An expansion of the α -CH₂ region showing triplets due to minor residual starting material (OA) at 2.37 ppm

Table S2: Cost of catalyst for 1 kg biodiesel

SL. No.	Name of chemical	Req. amount for	Req. amount for	^a Unit price (USD)	Total price (USD)
		2.5 g catalyst	77.1 g catalyst		
1	Anhydrous AlCl ₃	2.6 g	80.184 g	0.45/kg	0.036

2	Cyanuric chloride	1 g	30.84 g	1.41/kg	0.043
3	Triphenyl methane	1.3 g	40.092 g	1.13/kg	0.045
4	DCM	61 mL	1.881 L	0.37/L	0.696
5	THF	4 mL	123.36 mL	1.52/L	0.188
6	Methanol	16 mL	493.44 mL	0.12/L	0.059
7	Chlorosulphonic acid	1.5 mL	46.26 mL	1.09/L	0.05
8	Electricity	1.5 unit	46.26 unit	0.055/unit	2.544
9	Total amount				3.661
10	Reusability 5 cycles				3.661/5
11	Total Cost of catalyst				0.732

^aCost of raw materials are as per the purchased quotation price from Sisco research lab, BLD pharma, India Mart, Trade India, and Scientific global Guwahati, India. 1USD = 88.7 (Nov. 2025)

61

Table S3: Cost of 1 kg biodiesel from oleic acid by using microwave irradiation

SL. NO	Process	Description	Unit price (USD)	Cost (USD)
1	Total amount of biodiesel production	1 kg		
2	Cost of oleic acid feedstock	967 g	0.96/1kg	0.92
3	Methanol required for biodiesel	2.78 L	0.12/1L	0.33
4	Electricity	0.04 unit	0.055/unit	0.002
5	Quantity of catalyst needed for 1 kg biodiesel	77.1 kg		0.732

6	Total cost	1.984
	Overhead Cost 10 % net charge	0.198
	Total cost for 1 kg biodiesel	2.182

62