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1 Datasets

Organic Dataset at UwB97XD/Def2-TZVPD Silica Set at UwB97XD/Def2-TZVPD
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Figure S1: Histogram of molecular dipole norms (in Debye) computed at uwB97XD/def2-TZVPD
level of theory for each dataset.
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2 Sensitivity to Numerical Integration Grids

Figure S2:
moments,
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c. Quadrupole Integration Error
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Numerical integration accuracy in reproducing each component of molecular multipole
against the exact moments from the @B97X-D/Def2-TZVPD level of theory, for the
largest molecule in the Organic dataset. Molecular integrations were performed with the exponen-
tial radial grid and the Becke—Lebedev angular grid of HORTON 2, using different numbers of radial
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a. Charge Integration Error
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Figure S3: Numerical integration accuracy in reproducing each component of molecular multi-
pole moments, against the exact moments from the @B97X-D/Def2-TZVPD level of theory, for a
molecule in the Silica dataset. Molecular integrations were performed with the exponential radial
grid and the Becke—Lebedev angular grid of HORTON 2, using different numbers of radial (nrad
label) and angular (x-axis) grid points.
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a. Charge Integration Error
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c. Quadrupole Integration Error
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Figure S4: Numerical integration accuracy in reproducing each component of molecular multipole
moments, against the exact moments from the wB97X-D/Def2-TZVPD level of theory, for an
N-Methylacetamide conformer in the Backbone dataset. Molecular integrations were performed
with the exponential radial grid and the Becke-Lebedev angular grid of HORTON 2, using different
numbers of radial (nrad label) and angular (x-axis) grid points.
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a. Charge Integration Error
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Figure S5: Numerical integration accuracy in reproducing each component of molecular multipole
moments, against the exact moments from the ®B97X-D/Def2-TZVPD level of theory, for a TRP
sidechain conformer in the Sidechain dataset. Molecular integrations were performed with the
exponential radial grid and the Becke—Lebedev angular grid of HORTON 2, using different numbers
of radial (nrad label) and angular (x-axis) grid points.
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3 Approximating Molecular Dipole
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Figure S6: Accuracy of the point-charge approximation of the molecular dipole, tapprox = Y4 gaRA
for various charge schemes across different datasets at the uwB97XD/def2-TZVPD level of the-
ory. The first column plots the norm of the approximate dipole versus the norm of the exact dipole,
while the second and third columns display the error in the dipole norm and the error in the dipole
vector, respectively. The partitioning schemes included are Hirshfeld (H), iterative Hirshfeld (HI),
Minimal Basis Iterative Stockholder (MBIS), and the Additive Variational Hirshfeld (AVH) with
bound proatoms (AVH-B) and minimal proatoms (AVH-M), Charge Model 5 (CM5), and electro-
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static potential-fitted charges based on Hu, Lu, and Yang’s procedure (HLY GAt).
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3.1 Computational Robustness of Approximated Molecular Dipole
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Figure S7: Robustness of molecular dipole (top plot) and its point-charge approximation error
(bottom plot) defined in Equation (9), with respect to the level of theory for the Organic dataset (in
Debye). The basis set corresponds to the Def2 (Karlsruhe) basis sets. For each level of theory, the
error is calculated as the norm of the difference vector | texact — Happrox | for each molecule, and then
averaged over all molecules in each dataset. The values corresponding to @B97X-D/Def2-TZVPD
level of theory are presented in Table 1. For each molecule, the same geometry is used for all levels
of theory (i.e., single-point calculations were performed).

S-8



4 Approximating Molecular Quadrupole

Note that the Symmetry=None keyword was used in the Gaussian input files, which sets the origin
for molecular quadrupole moment calculations at (0,0,0). Since this origin is not aligned with the
molecular center of mass, the magnitude of the atomic coordinates {R4} directly influences the
calculated molecular quadrupole moments, and consequently, the associated errors reported when
approximating molecular quadrupole with only atomic charges. This effect is particularly rele-
vant for the Backbone and Sidechain datasets, as their geometries were extracted from molecular

dynamics trajectories of proteins, resulting in relatively large atomic coordinate components.

Table S1: Mean quadrupole error (in Debye - A) for approximating the molecular quadrupole using
atomic charges (Qgg%)rox), plus atomic dipole (Qggim + Qgﬁ,ﬁmx), plus atomic quadrupole (Qgg%,rox +

Qlphrox + Qphrox) as defined in Equation (10), computed at the @B97X-D/Def2-TZVPD level of
theory. For each level of approximation, the |Qexact — Qapprox| error defined in Equation (11) is
computed for each molecule, and then averaged over all molecules in each dataset. CMS5 and
HLYGALt are purely charge-based models, so higher-order approximations are not applicable for
these methods. For brevity, the subscript approx is omitted in the column labels, with each column
indicating only the additional atomic quadrupole term included in the approximation. The +Q(!)
column corresponds to results in Table 2, and Figure 4 illustrates their error distribution for each
scheme across the different datasets. Figure S8 shows the numerical error distribution of +Q®
for each scheme and dataset.

Organic Silica Backbone Sidechain
Schemes
QY +QM +Q®@ QO +Q® +Q@ QO 4+QM +Q® QO +Q1 4+Q®@
H 3.247 0983 0.000 0.668 0.573 0.002 81.377 0.774 0.040 64.527 0.934 0.048

AVH-M 2.180 1.001 0.000 0.841 0.468 0.002 35.269 0.795 0.040 38.595 1.044 0.048
AVH-B 2.720 0.667 0.000 1.068 0.326 0.002 27.433 0.236 0.041 32.588 0.382 0.048

HI 1.492 1.407 0.000 10.223 3.040 0.007 20.282 1.296 0.040 20.881 2.032 0.048
MBIS 1.211 0.879 0.003 4.389 0.398 0.046 26.645 2.100 1.983 20.391 2.992 2.705
CM5 1.670 - - 3.565 - - 26645 - - 2859 - -
HLYGAt 0467 - - 0.257 - - 3.618 - - 2.500 - -
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(a) Organic Dataset (b) Silica Dataset
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Figure S8: Distribution of errors in approximating the molecular quadrupole moment (in Debye - A)
using atomic charges and dipoles, i.e., Qgg%,mx + Qg%,%mx + Q%%,mx, as defined in Equation (10),
computed at the @B97X-D/Def2-TZVPD level of theory. For each molecule, the error is calculated
as the Frobenius norm of the full difference matrix |Qexact — Qapprox| defined in Equation (11). The

mean absolute error (MAE) values indicated in the legend match the corresponding column in
Table S1.
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Table S2: The percentage of molecules in each dataset for which adding the higher-order
atomic moments degrades approximating the molecular quadrupole moment at the wB97X-
D/Def2-TZVPD level of theory. %P; denotes the percentage of molecules in each dataset for

. 0 1 0
which |Qexact — (Qgp{m + Qgp%)roxﬂ — |Qexact — (Qgp{m| > € and %P, denotes the percentage of
. . 0 1 0 1
molecules in each dataset for which |Qexact - (nglp%)rox + Qz(lp%)rox” - |Qexact - (Qa(lp%)rox + Qgp%)rox +

Qgﬁ%)mx)] > €. The norms are defined in Equation (11). The value of € = 0.05 to make sure we are
not comapring numerical error.

Organic Silica Backbone Sidechain
Schemes

%P, %Py %P, %P, WPy %P, %P, %P,
H 47 00 363 00 00 00 00 00

AVH-M 51 00 153 00 00 00 0.0 0.0
AVH-B 47 00 20 00 00 00 00 O.1
HI 439 00 04 00 00 00 06 00
MBIS 294 00 00 00 00 300 05 314
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4.1 Computational Robustness of Approximated Molecular Quadrupole
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Figure S9: Robustness of mean quadrupole error (in DA) for approximating the molecular
quadrupole with respect to the level of theory for the Organic dataset. The basis set corresponds
to the Def2 (Karlsruhe) basis sets. The error is calculated as the Frobenius norm of the difference
matrix |Qexact — Qapprox| for each molecule, and then averaged over all molecules in each dataset.
The values corresponding to @B97X-D/Def2-TZVPD level of theory are presented in Table 2. For
each molecule, the same geometry is used for all levels of theory (i.e., single-point calculations
were performed). S-12



5 Conformational Stability
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Figure S10: Variation in atomic charges for atoms in alanine dipeptide conformers across different
partitioning schemes as a function of the dihedral angle. Atom numbering corresponds to that in
Figure S1. Atomic charges were obtained at the @B97X-D/Def2-TZVPD level of theory. The
partitioning schemes included are Hirshfeld (H), iterative Hirshfeld (HI), Minimal Basis Iterative
Stockholder (MBIS), and the Additive Variational Hirshfeld (AVH) with bound proatoms (AVH-B)
and minimal proatoms (AVH-M).
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Figure S11: Variation in atomic dipole norms for atoms in alanine dipeptide conformers across
different partitioning schemes as a function of the dihedral angle. Atom numbering corresponds
to that in Figure S1. Atomic dipoles were obtained at the @B97X-D/Def2-TZVPD level of the-
ory. The partitioning schemes included are Hirshfeld (H), iterative Hirshfeld (HI), Minimal Basis
Iterative Stockholder (MBIS), and the Additive Variational Hirshfeld (AVH) with bound proatoms
(AVH-B) and minimal proatoms (AVH-M).
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Figure S12: Variation in atomic quadrupole norms for atoms in alanine dipeptide conformers
across different partitioning schemes as a function of the dihedral angle. Atom numbering cor-
responds to that in Figure S1. Atomic quadrupoles were obtained at the @B97X-D/Def2-TZVPD
level of theory. The partitioning schemes included are Hirshfeld (H), iterative Hirshfeld (HI), Min-
imal Basis Iterative Stockholder (MBIS), and the Additive Variational Hirshfeld (AVH) with bound
proatoms (AVH-B) and minimal proatoms (AVH-M).
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