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Note 1: Geometric Model of Solvent Evaporation Kinetics 

According to classical nucleation theory1, the nucleation rate (𝐽𝐽), number of nuclei per unit time per 

volume is defined as 

𝐽𝐽 = 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(−𝛥𝛥𝐺𝐺∗

𝑘𝑘𝑘𝑘
)                            (1) 

Where 𝐾𝐾 is the prefactor related to molecular dynamics, 𝑘𝑘 is the Boltzmann constant and 𝑇𝑇 is the 

absolute temperature. For a certain solution system under a given temperature, the 𝐽𝐽 is determined by the 

critical nucleation barrier (𝛥𝛥𝐺𝐺∗), which is the change of Gibbs free energy of the system when the crystal 

nucleus reaches the critical nucleation radius. The 𝛥𝛥𝐺𝐺∗ is derived as 

𝛥𝛥𝐺𝐺∗ = 16𝜋𝜋𝛾𝛾3𝑣𝑣2

3𝑘𝑘2𝑇𝑇2(𝑙𝑙𝑙𝑙𝑙𝑙)2
                            (2) 

Where 𝛾𝛾 is the interfacial energy between the solution and solute molecules, 𝑣𝑣 is the volume of the 

molecule, and 𝑆𝑆 is the supersaturation of the solution. Therefore, in a specific solution system and 

temperature, the nucleation rate of the solution is only determined by the degree of supersaturation. For a 

solution that precipitates crystals by solvent evaporation with concentration increasing, the rate of solvent 

evaporation determines the nucleation rate. To understand why the space confinement strategy on the 

fiber end facet can reliably achieve single crystal growth, it is necessary to introduce geometric models to 

compare it with naturally evaporating droplets.  

The droplet with a radius of r in the shape of a spherical cap completely covers the end facet of the 
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optical fiber and spreads out to form an approximately circular disk shape when covered with 

hydrophobic glass. The thickness of the disk is ℎ. Therefore, its volume is 𝜋𝜋𝑟𝑟2ℎ and the area of sidewall 

is 2𝜋𝜋𝜋𝜋ℎ. The solvent only evaporates outward on the sidewall in contact with air, and the volume of the 

solution decreases with time, geometrically manifested as a decrease in the contraction radius of the disk. 

Thus, its volume change per unit time is 

𝑑𝑑𝑑𝑑 = 2𝜋𝜋𝜋𝜋ℎ𝑑𝑑𝑑𝑑                             (3) 

And the volume change per unit time is 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −2𝜋𝜋𝜋𝜋ℎ𝐸𝐸                             (4) 

Where 𝐸𝐸 is the evaporation coefficient of the solvent. Plug 𝑑𝑑𝑑𝑑 in it we obtain 

𝑑𝑑𝑑𝑑 = −𝐸𝐸𝐸𝐸𝐸𝐸                               (5) 

Integrating it can yield 

𝑟𝑟(𝑡𝑡) = 𝑟𝑟0 − 𝐸𝐸𝐸𝐸                             (6) 

Where 𝑟𝑟0 is the initial radius of the droplet, in fact, it is the radius of the optical fiber. Furthermore, we 

can plug it in to obtain the concentration formula 

𝑐𝑐 = 𝑛𝑛
𝑉𝑉

= 𝑛𝑛
𝜋𝜋𝑟𝑟(𝑡𝑡)2ℎ

= 𝑛𝑛
𝜋𝜋(𝑟𝑟0−𝐸𝐸𝐸𝐸)2ℎ

                        (7) 

Where 𝑛𝑛 is the amount of substance in the droplet. The volume of liquid droplets that can be bound by 

the fiber end facet is constant for solutions of the same concentration and solvent, determined by the 

wettability (contact angle) of the end face surface. In terms of time, before the crystal grows out, the 

solution can be considered essentially homogeneous, so it makes sense to assume that 𝑛𝑛 remains 

constant. 

For naturally evaporated droplet without confinement, its shape is a spherical cap with a body radius of 

𝑅𝑅, a base radius of 𝑟𝑟 and height of ℎ′, which are determined by the contact angle of the fiber end facet 

𝑅𝑅 = 𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

                                (8) 



ℎ′ = 𝑅𝑅(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                            (9) 

Due to the absence of hydrophobic glass, the solution would adhere to the hydrophilic end surface. As the 

solvent evaporates through the interface of air on the surface of the ball cap, the height of the ball cap will 

decrease with a constant radius 𝑟𝑟0. Based on this assumption, the geometric variable under this condition 

is the angle of liquid ball cap and the end face chamfer, which would gradually decrease as solvent 

evaporating. However, the volume of the ball cap is 𝜋𝜋ℎ′2(3𝑅𝑅 − ℎ′)/3, and it will be very difficult to 

calculate the numerical value when 𝑅𝑅 and ℎ′ is substituted by 𝜃𝜃. Our goal is to make a qualitative 

comparison, and herein we have made an approximation based on the actual situation. Considering the 

initial angle, the contact angle of the end facet should be less than 10°, and it would continue to decrease 

as the liquid evaporates. Therefore, these geometric variables at small angles can be approximated as 

𝑅𝑅 ≈ 𝑟𝑟0
𝜃𝜃

                                (10) 

ℎ′ ≈ 𝑟𝑟0𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≈ 𝑟𝑟0𝜃𝜃                           (11) 

Therefore, the exposed area of the droplet is 

𝐴𝐴′ = 2𝜋𝜋𝜋𝜋ℎ′ ≈ 2𝜋𝜋𝑟𝑟02                          (12) 

And the volume of the droplet (h << R) is 

𝑉𝑉′ ≈ 𝜋𝜋ℎ′2𝑅𝑅 ≈ 𝜋𝜋𝜋𝜋𝑟𝑟03                          (13) 

By substituting them into the evaporation formula, we can obtain 

𝑑𝑑𝑉𝑉′

𝑑𝑑𝑑𝑑
= 3𝜋𝜋𝑟𝑟03𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −2𝜋𝜋𝑟𝑟02𝐸𝐸                       (14) 

Cancelling 𝜋𝜋𝑟𝑟02 yields 

𝑑𝑑𝑑𝑑 = − 2𝐸𝐸
3𝑟𝑟0

𝑑𝑑𝑑𝑑                            (15) 

Integrating the formula yields 

𝜃𝜃 = 𝜃𝜃0 −
2𝐸𝐸
3𝑟𝑟0

𝑡𝑡                            (16) 



Where 𝜃𝜃0 is the contact angle of the fiber end surface. Thus, the concentration is 

𝑐𝑐′ = 𝑛𝑛
𝑉𝑉′

= 𝑛𝑛
𝜋𝜋𝜋𝜋𝑟𝑟03

= 𝑛𝑛

𝜋𝜋(𝜃𝜃0−
2𝐸𝐸
3𝑟𝑟0

𝑡𝑡)𝑟𝑟03
                     (17) 

Since we have equations (7) and (17), by making the denominators equal to zero, we can obtain the 

termination time when the solution completely evaporates. For space confinement growth 

𝑡𝑡 = 𝑟𝑟0
𝐸𝐸

                               (18) 

For naturally evaporated droplet 

𝑡𝑡′ = 3𝜃𝜃0𝑟𝑟0
2𝐸𝐸

= 3𝜃𝜃0
2
𝑡𝑡                          (19) 

Because 𝜃𝜃0 < 10° ≈ 0.1745, 𝑡𝑡 should larger than about 4𝑡𝑡′. It means that for a certain volume of 

solution, the evaporation time of the solvent in the spatial confinement method is at least four times that 

of natural exposure evaporation. For a more realistic scenario, the contact angle of completely hydrophilic 

silica is approximately 5 °, so this difference is even greater. The formula (17) has a steeper shape with a 

greater slope in the area near the asymptote. Therefore, for a determined initial concentration, the rate of 

concentration increase in the solution under spatial confinement is very slow, resulting in a low nucleation 

rate. If the evaporation coefficient of the solvent is introduced, the curve of DMSO, a high boiling point 

solvent, will be very smooth in the early stage, that support the growth of single crystal eventually. These 

simplified geometric models reliably validate the theoretical trend of controllable growth. 

 

 

Figure S1. Side-view photographs of droplets on (a) the bare glass, (b) the glass treated by UVO, (c) the 
glass covered by PMMA, (d) the glass in which the PMMA was removed, and (e) the glass applied with 
hydrophobic treatment, respectively. 

 



 

Figure S2. Photoluminescence spectrum of a bare optical fiber. 

 

 

Figure S3. Side-view photographs of droplets of different perovskite precursor solutions on hydrophilic 
glass: (a) Pure DMF, (b) DMF:DMSO = 4:1, (c) DMF:DMSO = 3:2, (d) DMF:DMSO = 2:3, (e) 
DMF:DMSO = 1:4, and (f) pure DMSO, respectively.  
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