

SUPPLEMENTARY INFORMATION

Charaterisation and instruments used

The instrumentation used is the same as our previously reported work[1].

Similarly, X-ray diffraction (XRD) analysis was conducted on a D8 Advance diffractometer using Cu K α radiation ($\lambda = 1.5406$ nm) in Bragg–Brentano mode. The morphology of the samples was examined through field-emission scanning electron microscope (FE-SEM, JEOL JSM-7500F, Japan) and transmission electron microscopy (TEM, JOEL, Germany). Electronic absorption measurements were carried out with a Cary 60 UV–vis spectrophotometer (Agilent Technologies, Malaysia). X-ray photoelectron spectroscopy (XPS) data were collected using a Kratos Axis supra+ spectrometer equipped with monochromatic Al K α radiation ($h\nu = 1486.6$ eV) and operating at 150 W. Electrochemical impedance spectroscopy (EIS), Mott-Schottky and photocurrent response analyses were performed using an Autolab Potentiostat (PGSTAT204, Netherlands). The setup comprised a platinum wire as the counter electrode, an Ag/AgCl electrode (3.0 M KCl) as the reference electrode, and a working electrode prepared by coating a fluorine-doped tin oxide (FTO) substrate (1.5 cm \times 1.5 cm) with 30 mg of the synthesized material. A binder mixture of 5 wt% PVDF and 100 μ L NMP was used for the electrode preparation. For EIS analysis, measurements were conducted in a solution containing 5 mM $[\text{Fe}(\text{CN})_6]^{3/4-}$ dissolved in 0.1 M KCl at an applied potential of +0.25 V without light, across a frequency range from 100 kHz to 0.1 Hz. Impedance data were analysed using a Randle circuit model. Mott-Schottky measurements were carried out under dark conditions with the 5 mM $[\text{Fe}(\text{CN})_6]^{3/4-}$ in 0.1 M KCl electrolyte solution. And the photocurrent response measurements were conducted in 0.1 M Na_2SO_4 applying a bias potential of 1.5 V with reference to the Ag/AgCl electrode. Photoluminescence (PL) spectroscopy (F-186 2710, HITACHI, Japan) was employed to investigate the recombination rate of photogenerated charge carriers

Table 1: Showing the obtained data from XRD used for calculating crystallite sizes of the photocatalyst

MgIn₂S₄		BiOBr		BiOBr/ MgIn₂S₄	
Peak position	FWHM	Peak position	FWHM	Peak position	FWHM
(degrees)	(degrees)	(degrees)	(degrees)	(degrees)	(degrees)
14.07128	1.30655	10.76	0.20127	10.69999	0.42454
23.2358	0.88088	21.79354	0.21945	15.09867	0.16976
27.4249	1.1408	25.05949	0.18448	21.7476	0.36677
33.18004	0.95952	31.59747	0.2247	25.02694	0.25474
43.57844	0.81298	32.10289	0.17538	27.12746	0.12612
47.79584	0.74891	44.62209	0.27257	27.6914	0.1344
59.43211	0.57285	46.12019	0.22419	30.65506	0.29388
66.7231	0.70549	50.60354	0.30437	31.6741	0.80418
		53.27363	0.23933	39.18358	0.31081
		56.11155	0.34671	44.57879	0.44331
		57.0645	0.29811	46.40688	0.51934
		70.96042	0.37215	53.25278	0.24694
		76.58		56.09704	0.52359
				57.05223	0.37415
				66.19434	0.37943
				67.35958	0.29026
				70.96453	0.40785
				76.57283	0.55285

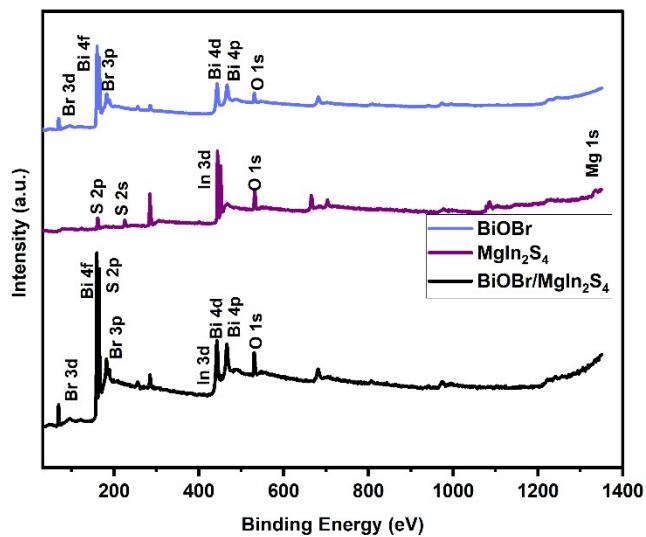


Figure S1: XPS survey scan of BiOBr, MgIn₂S₄ & BiOBr/MgIn₂S₄.

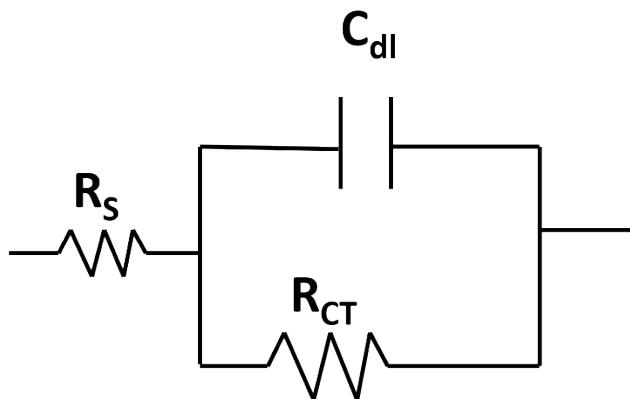


Figure S2: Nyquist Circuit model used for fitting EIS data

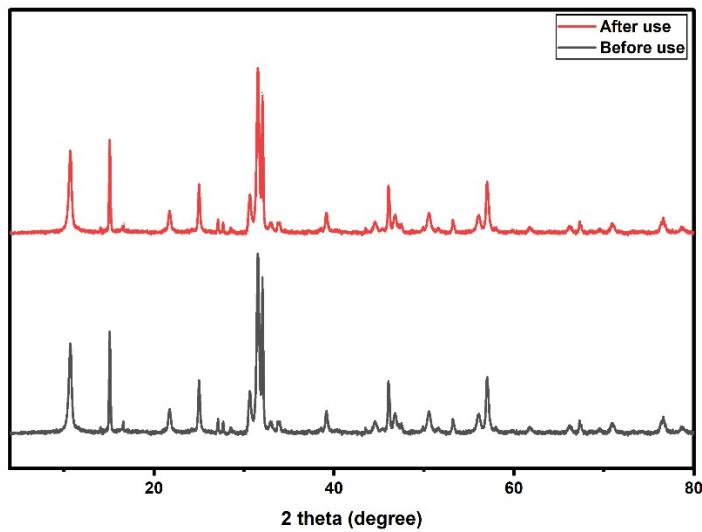


Figure S3: XRD pattern of BiOBr/MgIn₂S₄ before and after degradation

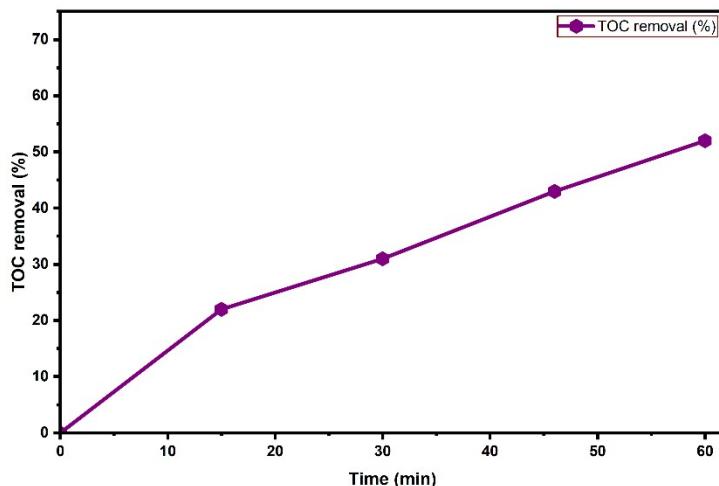


Figure S4: Total organic carbon removal

Table S2: Comparison of CIP degradation by previously reported heterojunction photocatalyst.

Catalysts	Catalyst Dosage	CIP parameters	Degradation Efficiency (%)	Rate	Ref
CeO ₂ /ZnO	25 mg	15 mg/L, 100 mL, 60 min	60 %	0.0130 min ⁻¹	[2]
Cd0.5Zn0.5S/CeO ₂	30 mg	5 mg/L, 50 mL, 30 mins	86%	0.0454 min-1	[3]
CeO ₂ -Ag/AgBr	50 mg	10 mg/L,	93%	0.0201 min ⁻¹	[4]

50 mL 120 min					
MoS ₂ /CeO ₂	50 mg	10 mg/ml, 100 mL, 120 mins	89%	0.017 min ⁻¹	[5]
BiOBr/MgIn ₂ S ₄	40mg	5 mg/ml, 50 mL, 45 mins	90	0.031 min ⁻¹	This study

References

- [1] D.C. Akintayo, T.L. Yusuf, N. Mabuba, Construction of hierarchical S-scheme MgIn₂S₄/CeO₂ heterojunction for boosted photocatalytic oxidation of tetracycline and reduction of Cr(VI), *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 721 (2025) 137215.
- [2] L. Wolski, K. Grzelak, M. Muńko, M. Frankowski, T. Grzyb, G. Nowaczyk, Insight into photocatalytic degradation of ciprofloxacin over CeO₂/ZnO nanocomposites: Unravelling the synergy between the metal oxides and analysis of reaction pathways, *Applied Surface Science*, 563 (2021) 150338.
- [3] T.L. Yusuf, O.C. Olalekan, D. Masekela, N. Mabuba, D. Onwudiwe, S. Makgato, Rational design of S-Scheme Cd0.5Zn0.5S/CeO₂ heterojunction for enhanced photooxidation of antibiotics and photoreduction of Cr(VI), *Ceramics International*, (2024).
- [4] X.-J. Wen, C.-G. Niu, L. Zhang, C. Liang, H. Guo, G.-M. Zeng, Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO₂-Ag/AgBr photocatalyst: Influencing factors, possible degradation pathways, and mechanism insight, *Journal of Catalysis*, 358 (2018) 141-154.
- [5] R. Ji, Z. Zhu, W. Ma, X. Tang, Y. Liu, P. Huo, A heterojunction photocatalyst constructed by the modification of 2D-CeO₂ on 2D-MoS₂ nanosheets with enhanced degrading activity, *Catalysis Science & Technology*, 10 (2020) 788-800.