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1. Text

Text S1. Grid Search

Grid search in Python is employed to optimize GBDT hyperparameters by selecting the
configuration that yields the lowest RMSE on the validation dataset. In the scikit-learn
library, GBDT is implemented through the Gradient Boosting Classifier and Gradient
Boosting Regressor.! The hyperparameters mainly involve boosting iterations and
decision tree settings. In this study, the evaluated parameters were: n_estimators (100,
200, 300, 500, 1000), max_depth (3, 5, 8, 15, 20, 25, 30, None), min_samples_leaf (1,
2,5, 10), learning_rate (0.01, 0.05, 0.1, 0.2), and max_features (“log2”, “sqrt”, None).
The dataset was randomly divided into training and testing subsets with a ratio of

0.8:0.2 during the search process.

Text S2. SHAP Values

For each observation, the model outputs a predicted value, while SHAP assigns an
importance score to every feature associated with that observation. Formally, SHAP
values are computed by evaluating the marginal contribution of each feature through
the difference in model predictions with and without the feature, followed by averaging
across all possible feature coalitions. This process yields the Shapley value of the
feature,? as defined in Eq. (S17).

Shapley value = Z [(Is] - D(n - [sDI/n!][v(sU{i}) - v(s)]

SCS.
i

(S17)
Where Si denotes all subsets of features excluding feature i, IS| is the cardinality of

subset S, V(5) represents the model prediction based on features in S, and v(sU{i})



corresponds to the model prediction including feature L.

Text S3. The partial dependence

The partial dependence function for regression is defined as shown in Eq. (S18):3

fxs(xs) = Ezc[f(xs,xc)] = ff(xs,xc)dP(xc) (S18)

Tr (%

Here, " *s* > denotes the partial dependence of the response variable on the feature
E, [F(xyx.)]

subset ¥s, while ’c represents the expected value of the predicted outcome

F(x.x )dP(x
over the distribution of the remaining features *c.The integral f Flroxc)dP o)

P(xc). Xs is a subset of

calculates this expectation across the probability distribution
features used in the regression model, and X is its complement, i.e., the remaining

features not included in *s; dP(x,) denotes the probability distribution of Xe.

Text S4. Principal Component Analysis

Purpose:

PCA was applied to reduce the dimensionality of correlated variables (e.g., carbon and
fluorine contents) while retaining the maximum variance.

Principle:

X = [xl,xz,...,xp]

PCA transforms the original correlated variables into a new set of

uncorrelated variables (principal components) Z= [Zl’ZZ’ ""Zp]by a linear combinatio:*
Where % are the coefficients (loadings) obtained from the eigenvectors of the

covariance matrix of X. The first principal component “ captures the maximum



variance of the original variables.

Usage:

In this study, the first principal component of the carbon chain length (C) and the number of
fluorine atoms(F) was used as a new variable to replace the original C and F features in

subsequent analyses.

Text SS. Datase
The dataset in this study was derived from 37 publications, resulting in a total of 605

data entries included in the final dataset. 54!,
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Fig. S1. Pearson correlation coefficient of input features.
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Fig. S2. Kendall correlation coefficient of input features.
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Fig. S3. Spearman correlation coefficient of input features.
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Fig. S4. Variance inflation factor (VIF) of input features.
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