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1. Text

Text S1. Grid Search

Grid search in Python is employed to optimize GBDT hyperparameters by selecting the 

configuration that yields the lowest RMSE on the validation dataset. In the scikit-learn 

library, GBDT is implemented through the Gradient Boosting Classifier and Gradient 

Boosting Regressor.1 The hyperparameters mainly involve boosting iterations and 

decision tree settings. In this study, the evaluated parameters were: n_estimators (100, 

200, 300, 500, 1000), max_depth (3, 5, 8, 15, 20, 25, 30, None), min_samples_leaf (1, 

2, 5, 10), learning_rate (0.01, 0.05, 0.1, 0.2), and max_features (“log2”, “sqrt”, None). 

The dataset was randomly divided into training and testing subsets with a ratio of 

0.8:0.2 during the search process.

Text S2. SHAP Values

For each observation, the model outputs a predicted value, while SHAP assigns an 

importance score to every feature associated with that observation. Formally, SHAP 

values are computed by evaluating the marginal contribution of each feature through 

the difference in model predictions with and without the feature, followed by averaging 

across all possible feature coalitions. This process yields the Shapley value of the 

feature,2 as defined in Eq. (S17).

  (S17)

𝑆ℎ𝑎𝑝𝑙𝑒𝑦 𝑣𝑎𝑙𝑢𝑒 =  ∑
𝑠 ⊆ 𝑆𝑖

[(|𝑠| ‒ 1)!(𝑛 ‒ |𝑠|)!/𝑛!][𝑣(𝑠⋃{𝑖}) ‒ 𝑣(𝑠)]

Where  denotes all subsets of features excluding feature ,  is the cardinality of 𝑆𝑖 𝑖 |𝑠|

subset , represents the model prediction based on features in , and  𝑠 𝑣(𝑠) 𝑠 𝑣(𝑠⋃{𝑖})



corresponds to the model prediction including feature .𝑖

Text S3. The partial dependence

The partial dependence function for regression is defined as shown in Eq. (S18):3

          (S18)
𝑓̂𝑥𝑠

(𝑥𝑠) = 𝐸𝑧𝑐
[𝑓̂(𝑥𝑠,𝑥𝑐)] = ∫𝑓̂(𝑥𝑠,𝑥𝑐)𝑑𝑃(𝑥𝑐)

Here,  denotes the partial dependence of the response variable on the feature 
𝑓̂𝑥𝑠

(𝑥𝑠)

subset , while  represents the expected value of the predicted outcome 𝑥𝑠
𝐸𝑧𝑐

[𝑓̂(𝑥𝑠,𝑥𝑐)]

over the distribution of the remaining features .The integral  𝑥𝑐 ∫𝑓̂(𝑥𝑠,𝑥𝑐)𝑑𝑃(𝑥𝑐)

calculates this expectation across the probability distribution .  is a subset of 𝑃(𝑥𝑐) 𝑥𝑠

features used in the regression model, and  is its complement, i.e., the remaining 𝑥𝑐

features not included in ;  denotes the probability distribution of .𝑥𝑠 𝑑𝑃(𝑥𝑐) 𝑥𝑐

Text S4. Principal Component Analysis

Purpose:

PCA was applied to reduce the dimensionality of correlated variables (e.g., carbon and 

fluorine contents) while retaining the maximum variance.

Principle:

PCA transforms the original correlated variables  into a new set of 𝑋 = [𝑥1,𝑥2,…,𝑥𝑝]

uncorrelated variables (principal components) by a linear combinatio:4𝑍 = [𝑧1,𝑧2,…,𝑧𝑝]

                 (S19)𝑧𝑖 = 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + ··· + 𝑎𝑖𝑝𝑥𝑝

Where  are the coefficients (loadings) obtained from the eigenvectors of the 𝑎𝑖𝑗

covariance matrix of . The first principal component  captures the maximum 𝑋 𝑧1



variance of the original variables.

Usage:

In this study, the first principal component of the carbon chain length (C) and the number of 

fluorine atoms(F) was used as a new variable to replace the original C and F features in 

subsequent analyses.

Text S5. Datase

The dataset in this study was derived from 37 publications, resulting in a total of 605 

data entries included in the final dataset. 5–41.



Figures:

Fig. S1. Pearson correlation coefficient of input features.



Fig. S2. Kendall correlation coefficient of input features.



Fig. S3. Spearman correlation coefficient of input features.



Fig. S4. Variance inflation factor (VIF) of input features.
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