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Pro forma cost analysis related to SBP production

In previous work (Steevensz et al.(2013), Industrial Crops and Products 48, 13– 18; 

http://dx.doi.org/10.1016/j.indcrop.2013.03.030), we found that several varieties of ‘high-activity’ dried hulls had 60 

– 70 U/g of SBP activity, i.e.- 60 – 70 MU/ tonne (metric, 1000  kg) of hulls. Recent data (19 Dec.., 2025) from the 

USDA (ams_3511.pdf) has a range of hull prices, 115 – 200 USD/ton, i.e. 908 kg. If the average ton cost is taken as 

160 USD and pro-rated to a metric tonne, the cost is 176 USD/ tonne. At 65 MU/tonne, this would come out to a 

hull cost of 2.71 USD/MU of peroxidase.  In the important scenario whereby SBP is extracted from hulls at a 

soybean processing site and the hulls are not purchased but ‘rented’, say at 20% of the purchase price, this hull cost 

would come down fivefold, while the moist hulls are returned to the processor for feed formulation as usual. The 

calculation could go on with the optimized U/mL of any given substrate, eg, if 1.0 U/mL were needed for a 1.0 mM 

substrate of mol. wt. 108 g/mol (eg, cresol), 1 MU would treat 1000 L, i.e., remove 108 g of that substrate. It would 

have to be decided if $0.54 for SBP input, plus other processing costs, would be reasonable for the treatment of 1 m3 

of that particular wastewater. Additional costs would include the cost of peroxide (ca. $0.10)plus the amortized cost 

of capital (ca. $0.14) for a simple treatment plant (Mukherjee et al. (2019), Chemosphere 235, 365--372; 

https://doi.org/10.1016/j.chemosphere.2019.06.182 ). 
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Figure S1 pH dependence of 1mM m-cresol concentration after 3 hours. Conditions:  0.6 U/mL SBP, 1.5 mM 

H2O2, pH 4.0-9.0, 40 mM buffer, room temperature 22±2 °C. Error bars represent standard deviations of triplicate 

samples.



Table S1 Treatment efficiencies of various substrates with SBPa in synthetic wastewater.

Substrate
Substrate
concentration 
(mM)

SBP 

(U/mL)

Normalized 
SBP 

(U/mL/mM)
Referenceb

o-cresol 1.0 0.70 0.7
m-cresol 1.0 0.80 0.8
p-cresol 1.0 0.30 0.3

This work

p-Anisidine 1.0 0.0018 0.0018
CI Methyl Orange 0.5 0.0070 0.014 Kaur et al. 2021

Acid blue 113 1.0 1.52 1.52
Direct black 38 0.5 2.84 1.42 Cordova-Villegas et al. 2019 

Diclofenac 0.1 0.15 1.5
Aceclofenac 0.1 0.6 6 Pishyar et al. 2025 

Triclosanc 0.010 0.10 10 Li et al. 2016
Triclosan 0.017 0.05 2.9 Mashhadi et al. 2019b 
Ioxynil 0.1 0.3 3.0
Bromoxynil 0.5 0.9 1.8 Zhang 2019 

Nonylphenol 0.023 0.003 0.13
Octylphenol 0.024 0.002 0.083
Estrone
17β-Estradiol  
17α-ethynylestradiol

0.039 each 0.12d 3.1

Mashhadi et al. 2019b 

3-Aminoquinoline 1.0 4.5 4.5 Mashhadi et al. 2019a 
Pyrrole 1.0 5.0 5
1-Hydroxybenzotriazole
              1.0 0.13 0.13

3-Aminopyrazole 1.0 3.0 3.0

Mashhadi et al. 2021 

Sulfamethoxazole 0.20 4.0 20 Mashhadi et al. 2019b; 
Sharifzadeh et al. 2024 

Sulfamethoxazolee 0.20 0.10 0.5 Sharifzadeh et al. 2024 
Sulfamerazinee 0.10 0.05 0.5 Sharifzadeh et al. 2024 
4,4-Methylenedianiline 0.5 0.7 1.4
4,4-Thiodianiline 0.5 0.15 0.3 Mukherjee et al. 2019 

3-Hydroxycoumarin 0.5 0.002 0.004
2-Aminobenzoxazole 0.1 3.5 35 Ziayee Bideh et al. 2021 
a Except as noted, all substrates were tested with the same preparation of SBP, activity assay by AAP-phenol 
coupling method; normalized SBP comparison devised by Kaur et al., 2021.
b References listed after Table S2.
c SBP preparation from Bio-Research Products, activity assay substrate was ABTS.
d These compounds treated together at the given concentrations, the SBP requirement is nominally
0.03–0.04 U/mL each.
e With mediator, hydroxybenzotriazole at 1.5 molar equivalent.



Table S2 Treatment initial kinetics of various SBPa substrates.

Substrate
SBP 

(U/ mL)

Half-life 

(min)

Normalized half-life 

(min.U/mL)
Reference

o-cresol 0.70 8.70 ± 0.07 6.09 ± 0.05
m-cresol 0.80 1.8 ± 0.1 1.45± 0.09
p-cresol 0.30 2.9 ± 0.3 0.86 ± 0.08

This work

Diclofenac 0.15 1.43 ± 0.01 0.22 ± 0.001
Aceclofenac 0.60 0.84 ± 0.05 0.49 ± 0.03

Pishyar et al. 2025 

Sulfamethoxazole 4.0 0.804 ± 0.003 3.22 ± 0.01
Sulfamerazine 2.50 1.22 ± 0.01 3.05 ± 0.02

Sharifzadeh et al. 2024

Pyrrole 5.0 49 ± 3 246 ± 15
Indole 0.45 26 ± 1 11.3 ± 0.5
2-Aminothiazole 4.0 33.0 ± 0.6 132 ± 2
2-Aminobenzothiazole 4.50 720 ± 0.01 3240 ± 0.04
4-Aminoantipyrine 0.10 61 ± 1 6.1 ± 0.1
Hydroxybenzotriazole 0.13 42 ± 2 4.97 ± 0.22
2-Aminoimidazole 1.50 5.1 ± 0.2 7.7 ± 0.3
2-Amino-benzimidazole 3.0 29.4 ± 0.6 88 ± 2
3-Aminopyrazole 3.0 37 ± 1 108 ± 4

Mashhadi et al. 2021

3-Hydroxyquinoline 0.10 11.9 ± 0.6 1.19 ± 0.06
3-Aminoquinoline 4.50 15.0 ± 0.6 68 ± 3

Mashhadi et al. 2019a 

4,4'-Methylenebis 
(2-chlororaniline) 0.10 4.08 ± 0.02 0.408 ± 0.002

4-Chloro-o-toluidine 0.009 11.5 ± 0.0 0.104 ± 0.0
Mukherjee et al. 2020 

4,4'-Oxydianiline 0.01 1.80 ± 0.02 0.018 ± 0.0002
p-Cresidine 0.04 12.4 ± 0.0 0.496 ± 0.0

Mukherjee et al. 2018 

4,4’-Thiodianiline 0.15 0.513 ± 0.007 0.077 ± 0.001
4,4'-Methylenedianiline 0.70 0.58 ± 0.10 0.40 ± 0.07

Mukherjee et al. 2019 

Bromoxynil 0.90 3.00 ± 0.02 2.70 ± 0.02
Ioxynil 0.30 0.51 ± 0.01 0.153 ± 0.003

Zhang 2019 

3-Hydroxycoumarin 0.002 12.4 ±0.5 0.0257 ± 0.001
2-Aminobenzoxazole 3.50 129 ± 4 452 ± 14

Ziayee Bideh et al. 2021

CI Acid Blue 113 1.50 8.8 ± 0.6 13 ± 1

CI Direct Black 38 0.75 2.1 ± 0.2 1.57 ± 0.15
Cordova Villegas et al. 

2018

p-Anisidine 0.0018 5.5 ± 0.8 0.0097 ± 0.0010
CI Methyl Orange 0.007 7 ± 2 0.05 ± 0.01

Kaur et al. 2021

a all substrates tested with the same preparation of SBP; normalized half-life comparison devised by Ziayee Bideh et 
al., 2021.
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Table S3 Summary of mass spectrometry results for o-cresol + ACN filtrate (50:50)

Symbols Molecular 
formula

Isotope Value 
(m/z)

Theoretical Mass 
(m/z) for H loss

Observed 
Mass (m/z)

Mass 
Accuracy 

(ppm) D
et

ec
te

d

M C7H8O 108.0575 107.0502 107.0501 -1.29 *
M2 - 2H C14H14O2 214.0994 213.0921 213.0920 -0.48 *
M3 - 4H C21H20O3 320.1425 319.1340 319.1341 0.41 *
M4 - 6H C28H26O4 426.1831 425.1758 425.1760 0.39 *
M5 – 8H C35H32O5 532.2250 531.2177 531.2170 -1.31 *
M6 - 10H C42H38O6 638.2668 637.2596 637.2585 -1.67 *
M7 - 12H C49H44O7 744.3087 743.3014 743.3043 3.86 *
M8 - 14H C56H50O8 850.3506 849.3433 849.3410 -2.7 *
M9 - 16H C63H56O9 956.3924 955.3852 955.3830 -2.26 *
M10 - 18H C70H62O10 1062.4343 1061.4265    

Table S4 Summary of mass spectrometry results for m-cresol reaction filtrate

Symbols Molecular 
formula

Isotope Value 
(m/z)

Theoretical 
Mass (m/z) for 

H loss

Observed 
Mass (m/z)

Mass 
Accuracy 

(ppm) D
et

ec
te

d

M C7H8O 108.0575 107.0502 107.0502 -0.36 *
M2 - 2H C14H14O2 214.0994 213.0921 213.0921 -0.02 *
M3 - 4H C21H20O3 320.1425 319.1340    
M4 - 6H C28H26O4 426.1831 425.1758    
M5 - 8H C35H32O5 532.2250 531.2177    
M6 - 10H C42H38O6 638.2668 637.2596    
M7 - 12H C49H44O7 744.3087 743.3014    
M8 - 14H C56H50O8 850.3506 849.3433    
M9 - 16H C63H56O9 956.3924 955.3852    
M10 – 18H C70H62O10 1062.4343 1061.4265    



Table S5 Summary of mass spectrometry results for m-cresol + ACN filtrate (50:50)

Symbols Molecular 
formula

Isotope Value 
(m/z)

Theoretical 
Mass (m/z) for 

H loss

Observed 
Mass (m/z)

Mass 
Accuracy 

(ppm) D
et

ec
te

d

M - H C7H8O 108.0575 107.0502 107.0501 -1.29 *
M2 - 2H C14H14O2 214.0994 213.0921 213.0921 -0.02 *
M3 - 4H C21H20O3 320.1425 319.1340 319.1337 -0.84 *
M4 - 6H C28H26O4 426.1831 425.1758 425.1757 -0.31 *
M5 - 8H C35H32O5 532.2250 531.2177 531.2173 -0.75 *
M6 - 10H C42H38O6 638.2668 637.2596 637.2591 -0.73 *
M7 - 12H C49H44O7 744.3087 743.3014 743.3013 -0.17 *
M8 - 14H C56H50O8 850.3506 849.3433 849.3422 -1.29 *
M9 - 16H C63H56O9 956.3924 955.3852    
M10 - 18H C70H62O10 1062.4343 1061.4265    

Table S6 Summary of mass spectrometry results for p-cresol reaction filtrate

Symbols Molecular 
formula

Isotope Value 
(m/z)

Theoretical 
Mass (m/z) 
for H loss

Observed Mass 
(m/z)

Mass 
Accuracy 

(ppm) D
et

ec
te

d

M C7H8O 108.0575 107.0502 107.0500 -2.23 *
M2 - 2H C14H14O2 214.0994 213.0921 213.0917 -1.89 *
M3 - 4H C21H20O3 320.1425 319.1340 319.1338 -0.53 *
M4 - 6H C28H26O4 426.1831 425.1758 425.1756 -0.55 *
M5 - 8H C35H32O5 532.2250 531.2177 531.2177 0 *
M6 - 10H C42H38O6 638.2668 637.2596 637.2589 -1.04 *
M7 - 12H C49H44O7 744.3087 743.3014 743.3008 -0.84 *
M8 - 14H C56H50O8 850.3506 849.3433 849.3425 -0.93 *
M9 - 16H C63H56O9 956.3924 955.3852    
M10 - 18H C70H62O10 1062.4343 1061.4265    



Table S7 Summary of mass spectrometry results for p-cresol + ACN filtrate (50:50)

Symbols Molecular 
formula

Isotope Value 
(m/z)

Theoretical 
Mass (m/z) for 

H loss

Observed Mass 
(m/z)

Mass 
Accuracy 

(ppm) D
et

ec
te

d

M C7H8O 108.0575 107.0502 107.0502 -0.36 *
M2 - 2H C14H14O2 214.0994 213.0921 213.0922 0.45 *
M3 - 4H C21H20O3 320.1425 319.1340 319.1342 0.73 *
M4 - 6H C28H26O4 426.1831 425.1758 425.1766 1.8 *
M5 - 8H C35H32O5 532.2250 531.2177 531.2183 1.13 *
M6 - 10H C42H38O6 638.2668 637.2596 637.2593 -0.41 *
M7 - 12H C49H44O7 744.3087 743.3014 743.3007 -0.94 *
M8 - 14H C56H50O8 850.3506 849.3433 849.3423 -1.17 *
M9 - 16H C63H56O9 956.3924 955.3852 955.3836 -1.63 *
M10 - 18H C70H62O10 1062.4343 1061.4265    


