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1. General Information

Unless otherwise stated, all reactions were magnetically stirred and conducted in oven-dried
glassware in anhydrous solvents under Ar. Solvents and liquid reagents, as well as solutions of
solid or liquid reagents were added via syringes, stainless steel or polyethylene cannulas through
rubber septa or through a weak Ar counter-flow. Cooling baths were prepared in Dewar vessels,
filled with ice/water (0 °C) or dry ice/acetone (-78 °C). Heated oil baths were used for reactions
requiring elevated temperatures. Solvents were removed under reduced pressure at 40-65 °C using
a rotavapor. All given yields are isolated yields of chromatographically and NMR
spectroscopically materials.

All abbreviations used in the Article and in this Supporting Information are defined below,
ethyl acetate (EA, EtOAc), diethyl ether (ether, EtO), dichloromethane (DCM), chloroform
(CHCl), tetrahydrofuran (THF), 1,4-dioxane (dioxane), dimethylformamide (DMF), dimethyl
sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), acetonitrile (MeCN, ACN), methanol
(MeOH), ethanol (EtOH), isopropyl alcohol (IPA, i-PrOH), n-butanol (n-BuOH), tert-butanol (t-
BuOH), acetone (acetone), toluene (PhMe), hexane (Hex), pyridine (Py), water (H20).

All commercially available chemicals were used as received without further purification.
Solvents as follows: CH;OH, toluene, EA, ether, DCM, dioxane, acetone were used without further
purification. THF and DCM are delivered from an Innovation Technology solvent system.

The 'H and 3C NMR spectra were recorded in chloroform-d, DMSO-ds and THF-dg on 400
MHz and 500 MHz instruments with TMS as internal standard. For referencing the '"H NMR
spectra, the residual solvent signal (6 = 7.26 for chloroform-d, 6 = 2.50 for DMSO-dgand & = 1.85
and 3.76 for THF-dg) were used. In the case of the 1*C NMR spectra, the signal of solvents (6 =
77.16 for chloroform-d, & = 39.52 for DMSO-dg and 6 = 25.62 and 67.97 for THF-dg) were used.
Chemical shifts(5) were reported in ppm with respect to TMS. Data are represented as follows:
chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant
(J, Hz), and integration. Samples 1A and 6A were characterized by DLS (Nanotrac NPA250) in
MeOH/THF (50/50), the sample concentration is 0.4 mg/mL. Samples 1A and 6A were canned by
SEM Zeiss crossbeam 540, at 3 kV accelerating voltage with secondary electron detector. TEM
Hitachi 8100, 200 Kv accelerating voltage. Samples solutions in EtOH were dropped on TEM grid
substrates and were then inspected by TEM (H8100) at an accelerating voltage of 200 Kv. GPC
data were collected using TOSOH Eco SEC HLC-8320 GPC equipped with a dual-flow refractive
index detector. A UV detector is also included for UV visible polymers and can be used in tandem
with the RI detector. The installed columns have a range of 500 — 107 Da. Samples were run for
20 minutes with flow rate 0.7 mL/min. Polystyrene (PS) standards (PstQuick C) were used for
calibration in our experiments. The NMR data were collected using JEOL ECS 400 MHz NMR
Spectrometer with multinuclear, direct detection probe, automatic sample changer, variable
temperature, and Z-gradient capabilities. High Resolution mass spectrometer Orbitrap Fusion



Lumos from Thermo Scientific, Palo Alto, CA was used at resolution of 120000 using ESI and
infusion using acetonitrile as solvent and 1 microgram per milliliter of sample concentration.

2. Synthetic Procedures

O Pd(OAc), (6 mol%) O
O 0 KOACc (6.0 equiv.) o 0
Br Br + BB, DMF B B,
o] (0] (0] o

, ,

9,10-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) anthracene (A)

9,10-dibromoanthracene (5.40 g, 16 mmol), KOAc (9.80 g, 39.0 mmol), Palladium (II)
acetate (215.52 mg, 0.96 mmol) and 100 mL of Dimethylformamide were introduced into a 250
mL round-bottom flask equipped with a stirring bar and a rubber septum. The flask was then
degassed under vacuum and backfilled with argon three times. The mixture was heated up to 80
°C, 8 hours. After the reaction is completed, Cool the mixture to room temperature and pour the
mixture into water while stirring. Extract the mixture with dichloromethane, then wash the organic
layer with brine. Dry the organic layer over anhydrous sodium sulfate. After rotary evaporation,
recrystallize the residue from EtOH.! The resulting yellow solid. '"H NMR (400 MHz, chloroform-
d) 6 8.37 — 8.28 (m, 4H), 7.47 — 7.41 (m, 4H), 1.57 (s, 24H). 3C NMR (101 MHz, chloroform-d)
o 135.01, 128.89, 125.27, 84.59, 25.30. HRMS (ESI) m/z: [M + H]" Calcd for CH33B,04
431.2559; Found 431.2560

Br Br

MeOOI\/Ie

2

2 was synthesized from 2,7-dihydroxynaphthalene following the reported procedure.”> 1,8-
dibromo-2,7-dimethoxynaphthalene (2): Yellow solid, 76%. '"H NMR (400 MHz, chloroform-
d) 8 7.66 (d, J = 8.9 Hz, 2H), 7.08 (d, J = 8.9 Hz, 2H), 3.94 (s, 6H). 3C NMR (101 MHz,
chloroform-d) ¢ 156.56, 131.76, 130.19, 127.50, 111.75, 106.09, 57.30. HRMS (ESI) m/z: [M
+H]" (M+2 isotope peak) Calcd for C1,Hy;1Br,0, 346.9100; Found 346.9099.

Br Br

Eto\“/::OEt

3

3 was synthesized from 2,7-dihydroxynaphthalene following the reported procedure. -5 1,8-
dibromo-2,7-diethoxynaphthalene (3): Yellow solid, 71%. 'H NMR (400 MHz, chloroform-d)



8 7.62 (d, J=9.0 Hz, 2H), 7.05 (d, J = 8.9 Hz, 2H), 4.18 (q, J = 7.0 Hz, 4H), 1.49 (t, ] = 7.0 Hz,
6H). *C NMR (101 MHz, chloroform-d) & 156.08, 132.33, 131.98, 129.98, 127.65, 127.57,
113.29, 106.97, 106.47, 66.15, 65.76, 15.14, 14.63. HRMS (ESI) m/z: [M + HJ* Calcd for
C14H;5Br,0, 372.9433; Found 372.9440

Br Br

(H3C)2HCOOCH(CH3)2

4
4 was synthesized from 2,7-dihydroxynaphthalene following the reported procedure. -5 1,8-
dibromo-2,7-diisopropoxy-naphthalene (4): Yellow solid, 63%. 'H NMR (400 MHz,
chloroform-d) 6 7.69 — 7.62 (m, 2H), 7.11 (dd, J = 8.9, 1.7 Hz, 2H), 4.67 (m, ] = 6.1, 1.7 Hz, 2H),
1.42 (dd, J = 6.1, 1.8 Hz, 12H). *C NMR (101 MHz, chloroform-d) & 155.47, 132.48, 129.60,
128.00, 115.81, 109.13, 73.68, 29.79, 22.46, 22.03. HRMS (ESI) m/z: [M + H]J" Caled for
C16H19Br202 4009746, Found 400.9751

Br Br

HSC<HQC>7OO(CH2)7CH3

5

5 was synthesized from 2,7-dihydroxynaphthalene following the reported procedure. 25 1,8-
dibromo-2,7-bis(octyloxy)-naphthalene 5): Yellow solid, 68%. 'H NMR (400 MHz,
chloroform-d) 6 7.62 (d, J = 8.9 Hz, 2H), 7.04 (d, J = 8.9 Hz, 2H), 4.07 (t, J = 6.5 Hz, 4H), 1.81
(dq,J=8.5, 6.6 Hz, 4H), 1.50 — 1.39 (m, 4H), 1.36 — 1.13 (m, 16H), 0.86 — 0.78 (m, 6H). 13C NMR
(101 MHz, chloroform-d) 6 156.18, 131.98, 129.92, 127.44, 113.08, 106.84, 70.46, 31.91, 29.50,
29.40, 29.33, 26.15, 22.77, 14.22. HRMS (ESI) m/z: [M]® (M+2 isotope peak) Calcd for
C,6H33Br,0, 542.1218; Found 542.1217

Br Br

6

6 was synthesized from 2,7-dihydroxynaphthalene following the reported procedure. -5 5,6-
dibromo-1,2-dihydroacenaphthylene (6): Yellow solid, 83%. 'H NMR (400 MHz, chloroform-
d) 8 7.79 (d, J = 7.4 Hz, 2H), 7.09 (dt, J = 7.5, 0.9 Hz, 2H), 3.30 (d, J = 0.9 Hz, 4H). *C NMR
(101 MHz, chloroform-d) & 147.19, 142.09, 135.96, 127.89, 121.06, 114.48, 30.15. HRMS (ESI)
m/z: [M + H]" (M+2 isotope peak) Calcd for C1,HoBr,0, 344.8943; found 344.8957.



2.1. Polymerization Procedure

< >
PinBB—s >
Br Br Pd(pphs), (10 mole%) <>

KOAc (6.0 equiv) < > ]
PinB BPin + > < =
O THF/H,0(5:1), 80°C, 36h O N

—Br

—n

9,10-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) anthracene (A)(172.06 mg, 0.4 mmol, 1
equiv), 1,8-dibromonaphthalene (114.4 mg, 0.4 mmol, 1.0 equiv), KOAc (235.54 mg, 2.4 mmol,
6.0 equiv) and Pd(pphs3)4 (16 mg, 0.04 mmol) were added to a 15 mL oven-dried pressure vessel,
There were 5 mL of THF and 1 mL of H,O added to the pressure vessels’ bottom. The pressure
vessel was vacuum degassed before argon was introduced. Then, it was heated at 80 °C for 36
hours. The mixture was refrigerated and brought to room temperature. The resulting combination
was then added to MeOH/HCI (5:1 %Vol) in a single pot. The precipitated components were
filtered through a Buchner funnel, collected, and repeatedly washed with MeOH and water.
Additional drying was done to create light yellow solid (266.40 mg, 93%) (1A). M= 6681, M,,=
7642, PDI= 1.144. "H NMR (400 MHz, chloroform-d) 6 8.01 — 7.46 (m, Ar-H).

OMe

OMe Jn
2A
The same synthesis procedure as Polymer 1A, 2A was obtained as light-yellow solid (158.2 mg,
51%) M,=7006, M,,= 8050, PDI= 1.149. '"H NMR (400 MHz, chloroform-d) & 8.42 — 7.45 (m,
Ar-H), 4.01 —3.96 (dd, OCH;-H).

EtO

OFt Jn

3A
The same synthesis procedure as Polymer 1A, 3A was obtained as white solid (173.3 mg, 54%).
M,= 5891, M= 6677, PDI=1.133. 'H NMR (400 MHz, chloroform-d) 6 8.4 — 6.8 (m, Ar-H), 4.11
(m, OCH,-H), 1.31 (s, CH;-H).



OCH(CHj), PinB

7 N\

\ / Br (H4C),HCO

OCH(CHy), —n
4A
The same synthesis procedure as Polymer 1A, 4A was obtained as white solid (169.7 mg, 51%).

M,=6533, M,,= 7639, PDI=1.169. '"H NMR (400 MHz, chloroform-d) & 8.36 — 7.07 (m, Ar-H),
4.6 - 4.8 (m, OiPr-H), 1.50-1.42 (s, CH;-H).

H3C(H2C),0

O(CH,);CH;  PinB

7 N\

\ / Br H;C(H,C);0

O(CH;);CH3

5A

The same synthesis procedure as Polymer 1A, SA was obtained as white solid (331.1 mg, 85%).
M,= 6126, M,,=6668, PDI=1.088.'HNMR (400 MHz, chloroform-d) 6 8.64 —7.05 (m, Ar-H), 4.16
—4.11 (m, OCH,-H), 1.94 - 0.90 (m, C¢H,;-H).

0
PMB—s >
<__ > -
Q <> O
S 2
.

6A

The same synthesis procedure as Polymer 1A, 6A was obtained as white solid (178.12 mg, 86%).
M,= 7171, M= 7872, PDI= 1.098. '"H NMR (400 MHz, chloroform-d) 6 8.36 — 7.06 (m, Ar-H),
3.30-3.27 (s, Ar-CH, CH,-H).



3. NMR Spectrum
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Figure 1: '"H NMR of 9,10-bis(4,4,5,5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) anthracene (A)
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Figure 2: 3C NMR of 9,10-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) anthracene (A)



2.00
202

1 B1E=

4
@

12 11 10 9 8 3 3 2 1 -1 =2
f1 (ppm)
Figure 3: '"H NMR of 1,8-dibromo-2,7-dimethoxynaphthalene (2)
‘ 1| L A
ZIZU ZiU ZUIEI léU lBIU 17‘U léU 15‘U 1“40 léU lZIEI liU lEPU QIU Sb 7‘U ﬁb SIU 4IU 30 Z‘U lb EII -IIU -ZIU

1 (ppm)

Figure 4: 3C NMR of 1,8-dibromo-2,7-dimethoxynaphthalene (2)
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Figure 5: '"H NMR of 1,8-dibromo-2,7-diethoxynaphthalene (3)
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Figure 6: 3C NMR of 1,8-dibromo-2,7-diethoxynaphthalene (3)
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Figure 7: '"H NMR of 1,8-dibromo-2,7-diisopropoxynaphthalene (4)
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Figure 8: 3C NMR of 1,8-dibromo-2, 7-diisopropoxynaphthalene (4)
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Figure 9: '"H NMR of 1,8-dibromo-2,7-bis(octyloxy)naphthalene (5)
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Figure 10: 3C NMR of 1,8-dibromo-2, 7-bis(octyloxy)naphthalene (5)
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Figure 11: 'H NMR 5,6-dibromo-1,2-dihydroacenaphthylene (6)
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Figure 12: 3C NMR 5,6-dibromo-1,2-dihydroacenaphthylene (6)
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Figure 13: 'H NMR Spectrum of Polymer (1A)

OCHyH

Ar-H

ri2

r-0.1

T T T T T T T T T T T T

1.0 105 100 95 90 85 80 75 70 65 60 55 50 45 40
f1 (ppm)

Figure 14: 'H NMR Spectrum of Polymer (2A)
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Figure 16: 'H NMR Spectrum of Polymer (4A4)
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Figure 17: 'TH NMR Spectrum of Polymer (5A)
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Figure 18: 'H NMR Spectrum of Polymer (6A4)



4. GPC Spectrum of polymers

200 1
AP-1A
100 N
=
o=
0 N
|
0 10 20
Time (min)
Ri[mY] [mW]
400,000 T IR0
fl
300.000 X Ve
i
200.000 — 50.000
|
P
100.000 -
|
| \
— / kY
0.000 \'. s . - 0.000
0.000 10.000 20,000
Lmin]
{Result of Molecular Weight Calculation>{RI)
Peakl1Base Peak
[rmin] [mWV] [mol] Mn 6681
Peak Start 10.053 1.043 23789 Mw T642
Peak Top 10.893 22 387 7685 Mz 8719
Peak End 11.698 13.716 2602 Mz+1 9944
My TG42
Height[m'] 14.873 Mp 7686
Area[mV s] G158.160 Mz Mw 1.141
Areat[y] 100.000 Mw/Mn 1.144
[Etal 764205349 Mz+1/Mw 1.301

Figure 19: Gel permeation chromatography (GPC) Spectrum of Polymer 1A
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Figure 20: Gel permeation chromatography (GPC) Spectrum of Polymer 24
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Figure 21: Gel permeation chromatography (GPC) Spectrum of Polymer 34
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Figure 22: Gel permeation chromatography (GPC) Spectrum of Polymer 44
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Figure 23: Gel permeation chromatography (GPC) Spectrum of Polymer 54
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Figure 24: Gel permeation chromatography (GPC) Spectrum of Polymer 6
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