

Influence of Dextrose Monohydrate on the Optical Properties and Adsorption Activity of $\text{Ni}_{0.6}\text{Zn}_{0.2}\text{Sb}_{0.2}\text{Fe}_2\text{O}_4$ Nanoferrites: Towards Multifunctional Applications

Nourhan Mohamed Gaber ^{1,*}, Leen W. El Khatib², Amani Aridi³, Alaa M. Abdallah⁴,

Gehan M. El-Subruiti⁵, Mirna Omar^{5,6}, Sarah Omar^{5,6}, Ramadan Awad^{7,8}

¹ Department of Medical Laboratories, Faculty of Applied Health Science Technology, Pharos University in Alexandria; Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt

² Department of Chemistry, Faculty of Science, Beirut Arab University, Beirut, Lebanon

³ Public health department, Faculty of Health Sciences, Modern University for Business and Science, Beirut, Lebanon

⁴ Physics Department, Faculty of Science, Beirut Arab University, Beirut, Lebanon

⁵ Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt

⁶ Department of Mechanical Engineering, Universiti Teknologi PETRONAS (UTP), 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

⁷ Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt

⁸ Department of Basic Sciences, Faculty of Computer Science and Artificial Intelligence, Pharos University in Alexandria, Alexandria, Egypt

*nourhan.gaber@pua.edu.eg

Text S1

3.8. Adsorption isotherm

The Freundlich isotherm is a complex model. This model considers multilayer adsorption on heterogeneous surfaces. The adsorption process is non-ideal and reversible with the presence of interaction between the adsorbed molecules. The non-linear equation of this model is described by Eq. (s1).¹

$$q_e = K_F C_e^{1/n} \quad (\text{Freundlich}), \quad (s1)$$

where K_F is the Freundlich constant and n is the adsorption intensity. The value of n gives an insight into the degree of non-linearity between the solution concentration and adsorption. If $n = 1$, then the adsorption is linear. If $n < 1$ indicates that the adsorption process occurs via chemical interactions; however, if $n > 1$, then the adsorption takes place through a physical process.² Also, the Temkin isotherm model accounts for the adsorbate-adsorbent molecules. As an outcome of this interaction, the heat of adsorption of all molecules in the layer decreases linearly with coverage. Moreover, a uniform distribution of binding energy characterizes the adsorption.³ The non-linear Temkin isotherm model is expressed in Eq. (s2).⁴

$$q_e = \frac{RT}{b_T} \ln (K_T C_e) \quad (\text{Temkin}), \quad (s2)$$

where b_T is the coefficient related to the sorption heat ($\text{J} \cdot \text{mol}^{-1}$), and K_T is the equilibrium binding

constant ($\text{L} \cdot \text{mg}^{-1}$). Typical adsorption energy, $\frac{RT}{b_T} \ln (K_T)$. T is the absolute temperature in K and R is the gas constant (8.314 J/mol. K).

References

- 1 A. S. Eltaweil, A. E. Awad, E. M. Abd El-Monaem, A. M. Shaker and G. M. El-Subruit, *J. Mol. Struct.*, 2025, **1337**, 142143.
- 2 L. Yan, L. Qin, H. Yu, S. Li, R. Shan and B. Du, *J. Mol. Liq.*, 2015, **211**, 1074–1081.
- 3 P. Senthil Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi and S. Sivanesan, *Desalination*, 2010, **261**, 52–60.
- 4 S. Liu, H. Ouyang and Z. Wang, *Mater. Res. Express*, 2022, **9**, 075003.