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S1 Materials and General Experimental Methods

All the glassware for synthesis was dried overnight in an oven before use. All the
reactions were carried out under an inert atmosphere unless otherwise stated in the
individual protocols. All the required chemicals and solvents were purchased from
different commercial sources and were used directly without purification. Solvents
such as tetrahydrofuran, dimethylformamide, acetonitrile, dichloromethane, and
toluene were dried in a solvent purification system (Pure Process Technology) under
an argon atmosphere. ACS-grade solvents were used for liquid extractions as well as
for column chromatography. Flash column chromatography (FC) was performed using
a Buchi Pure FlashPrep C-850 Chromatography System using silica as the stationary
phase (60 A, 230-400 mesh, silicycle) at 21 °C. The reaction progress was monitored
by thin-layer chromatography (TLC) using aluminum sheets coated with silica gel 60
F254 (Supelco, Sigma Aldrich), and visualization was done with UV light (254/365 nm).
"H nuclear magnetic resonance (NMR) spectra were recorded using Bruker AV 1l 400
and Bruker AV Ill 500 spectrometers. All the '3C NMR spectra were recorded on a
Bruker AV Ill 500 spectrometer. Chemical shifts (o) values are reported in ppm using
the residual non-deuterated solvent signals as an internal reference (chloroform-d: o
=7.26 ppm, & = 77.16 ppm; acetone-ds: o1 = 2.05 ppm, & = 29.84 ppm; acetonitirile-
ds: 4 = 1.94 ppm, &c = 1.32 ppm; methanol-ds & = 3.31 ppm, &c = 49.00 ppm,
dimethyl sulfoxide-de: o1 = 2.50 ppm, o6c = 39.52 ppm). Coupling constant (J) values
are recorded in hertz (Hz), and resonance multiplicity of peaks are described as s
(singlet), d (doublet), t (triplet), g (quartet), m (multiple), and brs (broad singlet). High-
resolution mass spectrometry (HR-MS) was performed by the Mass Spectrometry
Facility at Louisiana State University using an Agilent 6230 ESI TOF and a Bruker
rapifleX MALDI TOF/TOF.
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S2 Synthetic Procedures and Characterization
S2.1. 4-(benzhydrylamino)-4-oxobutanoic acid (12)

N (0]
~

Adapted from reported procedure,! a stirred solution of diphenylmethanamine (100
mg, 0.54 mmol), 4-(dimethylamino)pyridine (13 mg, 0.11 mmol), and triethylamine (83
uL, 0.60 mmol) in acetonitrile (10 mL) was prepared in a 100 mL round bottom flask,
to which succinic anhydride (54 mg, 0.54 mmol) was added. The reaction mixture was
stirred for 12 h at room temperature under N2 atmosphere. The progress of the
reaction was monitored by thin-layer chromatography. Upon completion, the reaction
mixture was concentrated under reduced pressure and diluted with 1 (N) aqueous
hydrochloric acid to remove the 4-(dimethylamino)pyridine. Subsequently, the mixture
was extracted with ethyl acetate (3 x 10 mL). The organic layer was washed with brine
and dried over anhydrous magnesium sulfate to remove residual water. Removal of
the solvent under reduced pressure afforded a solid, which was thereafter washed
with diethyl ether to obtain the product as a white solid (108 mg, 70%). '"H NMR (400
MHz, dimethyl sulfoxide-ds) 612.06 (brs, 1H), 8.78 (d, J = 8.7 Hz, 1H), 7.34 - 7.21 (m,
10H), 6.10 (d, J = 8.7 Hz, 1H), 2.46 — 2.45 (m, 4H). 3C NMR (125 MHz, dimethyl
sulfoxide-ds) 6 173.89, 170.38, 142.64, 128.34, 127.32, 126.89, 55.87, 29.99, 29.12.
HRMS (ESI) (m/z): Calcd for Ci7H47NO3 [M+H]* 284.1281, found: 284.1293;
C17H47NO3 [M+Na]* 306.1101, found: 306.1119.

S2.2. 4-((3,5-bis(trifluromethyl)benzyl)amino)-4-oxobutanoic acid (14)

CF,
/©\/H i
N
FsC ‘n/\)LOH
0

A stirred solution of 3,5-bis(trifluoromethyl)benzylamine (100 mg, 0.41 mmol), 4-
(Dimethylamino)pyridine (10 mg, 0.082 mmol), and triethylamine (62 uL, 0.45 mmol)
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in acetonitrile was prepared in a 100 mL round-bottom flask to which succinic
anhydride (54 mg, 0.54 mmol) was added. The reaction mixture was stirred for 12 h
at room temperature under N2 atmosphere. The progress of the reaction was
monitored by thin-layer chromatography. Upon completion, the reaction mixture was
concentrated under reduced pressure and diluted with 1 (N) aqueous hydrochloric acid
to remove the 4-(dimethylamino)pyridine. Subsequently, the mixture was extracted
with ethyl acetate (3 x 30 mL). The organic layer was washed with brine and dried
over anhydrous magnesium sulfate to remove residual water. Removal of the solvent
under reduced pressure afforded a white precipitate, which was thereafter washed
with diethyl ether to obtain the product as a while solid (91 mg, 65%). '"H NMR (400
MHz, methanol-d4) §7.90 (s, 2H), 7.84 (s, 1H), 4.52 (s, 2H), 2.65 — 2.62 (m, 2H), 2.56
—2.53 (m, 2H)."3C NMR (125 MHz, methanol-d4) 5§ 176.05, 174.95, 143.80, 132.79 (q,
J=33.2 Hz), 129.04, 129.00, 125.94, 123.77, 121.87, 121.83, 121.80, 121.77,121.61,
43.25, 31.41, 30.00. HRMS (ESI) (m/z): Calcd for C13H11FsNO3 [M+H]* 344.0716,
found: 344.0729.

S2.3. Receptor 1
S P:
N\n/\)l\
N
O

4-(benzhydrylamino)-4-oxobutanoic acid 12 (100 mg, 0.35 mmol) and N,N,N’,N-
tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate (147 mg, 0.38
mmol) were dissolved in dry dimethylformamide (3.0 mL) in a 100 mL two-neck round-
bottom flask under a N2 atmosphere. N,N-diisopropylethylamine (184 pL, 1.05 mmol)
was added, and the reaction mixture was stirred at room temperature for 1 h. After 1
h, a solution of aniline (38 pL, 0.42 mmol) in dry dimethylformamide (2.0 mL) was
added slowly, and the reaction was stirred for 12 h. The progress of the reaction was
monitored by thin-layer chromatography. Upon completion, the reaction mixture was
concentrated under reduced pressure and extracted with ethyl acetate (3 x 30 mL).

To remove residual high-boiling dimethylformamide, chilled water (3 x 20 mL) was
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used during the extraction procedure. Subsequently, the organic layer was washed
with 10% citric acid followed by the 10% sodium bicarbonate and brine to remove other
byproducts. Finally, the organic layer was concentrated under reduced pressure and
the residue was washed repeatedly with diethyl ether and hexane to remove the
tetramethylurea byproduct, affording the product as a white solid (309 mg, 83%).'H
NMR (400 MHz, dimethyl sulfoxide-ds) 6 8.79 (d, J = 8.6 Hz, 1H), 8.34 (t, J = 5.6 Hz,
1H), 7.33 — 7.22 (m, 15H), 6.11 (d, J = 8.6 Hz, 1H), 4.25 (d, J = 5.9 Hz, 2H), 2.48 (s,
2H), 2.42 — 2.39 (m, 2H). *C NMR (125 MHz, dimethyl sulfoxide-ds) 5 171.37, 170.71,
142.68, 139.61, 128.35, 128.24, 127.28, 127.16, 126.88, 126.68, 55.85, 42.03, 30.74.
HRMS (ESI) (m/z): Calcd for C24H24N202 [M+Na]* 395.1730, found: 395.1726;
CagHasN4O4 [2M+Na]* 767.3568, found 767.3565.

S2.4. Receptor 2

4-(benzhydrylamino)-4-oxobutanoic acid 12 (100 mg, 0.35 mmol) and N,N,N’,N-
Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate (147 mg, 0.38
mmol) were dissolved in dry dimethylformamide (3.0 mL) in a 100 mL two-neck round-
bottom flask under a N2 atmosphere. N,N-diisopropylethylamine (184 pL, 1.05 mmol)
was added, and the reaction mixture was stirred at room temperature for 1 h. Then, a
solution of (3,5-dimethoxyphenyl)methanamine (71 mg, 0.42 mmol) in dry
dimethylformamide (2.0 mL) was added, and the reaction was stirred overnight (12 h).
The progress of the reaction was monitored by thin-layer chromatography. Upon
completion, the reaction mixture was concentrated under reduced pressure and
extracted with ethyl acetate (3 x 30 mL). To remove residual high-boiling
dimethylformamide, cold water was used during the extraction procedure.
Subsequently, the organic layer was washed with 10% citric acid, 10% sodium
bicarbonate, and brine to remove other byproducts. Finally, the organic layer was
concentrated under reduced pressure. The residue was washed repeatedly with

diethyl ether and hexane to remove the tetramethylurea byproduct, affording the
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product as a white solid (389 mg, 90%). '"H NMR (500 MHz, methanol-ds) § 7.32 —
7.29 (m, 4H), 7.25 — 7.22 (m, 6H), 6.44 (d, J = 1.7 Hz, 2H), 6.34 (t, J = 2.4 Hz, 1H),
6.16 (s, 1H), 4.28 (s, 2H), 3.72 (s, 6H), 2.63 (t, J = 6.9 Hz, 2H), 2.56 (t, J = 6.9 Hz, 2H).
13C NMR (125 MHz, methanol-d4) § 174.57, 173.70, 162.47, 143.18, 142.30, 129.50,
128.64, 128.27, 106.33, 100.10, 58.26, 55.72, 44.20, 32.16, 32.11. HRMS (ESI) (m/z):
Calcd for CosH2sN204 [M+Na]* 455.1941, found: 455.1937; Cs2Hs6N4Os [2M+Na]*
887.3990, found: 887.3987.

S2.5. Receptor 3.

4-(benzhydrylamino)-4-oxobutanoic acid 12 (100 mg, 0.35 mmol) and N,N,N’,N-
Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate (147 mg, 0.38
mmol) were dissolved in dry dimethylformamide (3.0 mL) in a 100 mL two-neck round-
bottom flask under a N2 atmosphere. N,N-diisopropylethylamine (184 pL, 1.05 mmol)
was added and reaction mixture was stirred at room temperature for 1 h. After 1 h, a
solution of 3,5-bis(trifluoromethyl)benzylamine (103 mg, 0.42 mmol) in dry
dimethylformamide (2 mL) was added and the reaction was stirred for 12 h. The
progress of the reaction was monitored by thin-layer chromatography. Upon
completion, the reaction mixture was concentrated under reduced pressure and
extracted with ethyl acetate (3 x30 mL). To remove residual high-boiling
dimethylformamide, chilled water was used during the extraction procedure.
Subsequently, the organic layer was washed with 10% citric acid, 10% sodium
bicarbonate, and brine to remove other byproducts. Finally, the organic layer was
concentrated under reduced pressure, and the residue was washed repeatedly with
diethyl ether and hexane to remove the tetramethylurea byproduct, affording the
product as a white solid (431 mg, 85%). '"H NMR (500 MHz, methanol-ds) 5 7.89 (s,
2H), 7.83 (s, 1H), 7.31 — 7.28 (m, 4H), 7.24 — 7.22 (m, 4H), 6.17 (s, 1H), 4.50 (s, 2H),
2.64 (t, J = 6.5 Hz, 2H), 2.58 (t, J = 6.5 Hz, 2H); "*C NMR (125 MHz, methanol-ds) §
175.03, 173.58, 143.76, 143.20, 129.48, 129.12, 128.63, 128.25, 125.93, 123.77,
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121.85, 58.18, 43.29, 31.96. HRMS (ESI) (m/z): Calcd for C26H22FsN202 [M+Na]*
531.1478, found: 531.1481; Cs2H44F12N4O4 [2M+Na]* 1039.3063, found: 1039.3078.

S2.6. Receptor 4.

4-(benzhydrylamino)-4-oxobutanoic acid 12 (100 mg, 0.35 mmol) and N,N,N’,N-
Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate (147 mg, 0.38
mmol) were dissolved in dry dimethylformamide (3.0 mL) in a 100 mL two-neck round-
bottom flask under a N2 atmosphere. DIPEA (184 pL, 1.05 mmol) was added and the
reaction was stirred at room temperature for 1 h. After 1h, a solution of
diphenylmethanamine (73 pL, 0.42 mmol) in dry dimethylformamide (2.0 mL) was
added and the reaction was stirred overnight (12 h). The progress of the reaction was
monitored by thin layer chromatography. Upon completion, the reaction mixture was
concentrated under reduced pressure and extracted with ethyl acetate (3 x 30 mL).
To remove residual high-boiling dimethylformamide, cold water was used during the
extraction procedure. Subsequently, the organic layer was washed with 10% citric
acid, 10% sodium bicarbonate, and brine to remove other byproducts. Finally, the
organic layer was concentrated under reduced pressure and the residue was washed
repeatedly with diethyl ether and hexane to remove the tetramethylurea byproduct,
affording the product as a white solid (358 mg, 80%). '"H NMR (500 MHz, methanol-
ds) 5 7.31 —7.28 (m, 9H), 7.25 — 7.22 (m, 13H), 6.16 (s, 2H), 2.63 (s, 4H). '*C NMR
(125 MHz, methanol-ds) 6 173.78, 143.16, 129.51, 128.64, 128.27, 58.26, 32.12,
30.75. HRMS (ESI) (m/z): Calcd for C3oH2sN202 [M+Na]* 471.2043, found:471.2028;
CsoHs6N4O4 [2M+Na]* 919.4194, found: 919.4153.
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S$2.7. Receptor 5.

4-((3,5-bis(trifluromethyl)benzyl)amino)-4-oxobutanoic acid 14 (100 mg, 0.29 mmol)
and N,N,N’,N-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate
(147 mg, 0.32 mmol) was dissolved in dry dimethylformamide (3.0 mL) in a 100 mL
two-neck round-bottom flask under a N2 atmosphere. N,N-diisopropylethylamine (151
uL, 0.87 mmol) was added and the reaction mixture was stirred at room temperature
for 1 h. After 1h, a solution of 3,5-Bis(trifluoromethyl)benzylamine (73 pL, 0.42 mmol)
in dry dimethylformamide (2.0 mL) was added and the reaction was stirred overnight
(12 h). The progress of the reaction was monitored by thin layer chromatography.
Upon completion, the reaction mixture was concentrated under reduced pressure and
extracted with ethyl acetate (3 x 30 mL). To remove residual high boiling
dimethylformamide, chilled water was used during the extraction procedure.
Subsequently, the organic layer was washed with 10% citric acid, 10% sodium
bicarbonate, and brine to remove the other byproducts. Finally, the organic layer was
concentrated under reduced pressure, and the residue was washed repeatedly with
diethyl ether and hexane to remove tetramethyl byproduct, affording the product as a
white solid (358 mg, 80%). "H NMR (500 MHz, methanol-ds) 57.89 (s, 4H), 7.82 (s,
2H), 4.51 (s, 4H), 2.60 (s, 4H). '*C NMR (125 MHz, methanol-ds) 5 174.86, 143.86,
132.76 (q, J = 33.2 Hz), 129.03, 125.93, 123.77, 121.78, 43.19, 31.61. HRMS (ESI)
(m/z): Calcd for C22H16F12N202 [M+H]* 569.1093, found: 569.1110.
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S2.8. Receptor 6.

N
Hf e

N'-benzhydryl-N*-benzylsuccinamide 1 (100 mg, 0.27 mmol) and Lawesson's reagent
(543 mg, 1.34 mmol) were dissolved in dry tetrahydrofuran (10.0 mL) in a 100 mL two-
neck round-bottom flask under a N2> atmosphere. The reaction mixture was then stirred
at 60 °C for 12 h. The progress of the reaction was monitored by thin-layer
chromatography. Upon completion, the solvent was evaporated under reduced
pressure, and aqueous sodium bicarbonate (20 mL) was added to remove byproducts
and extracted with ethyl acetate (3 x 30 mL). The organic layer was washed with brine,
dried over anhydrous magnesium sulfate to remove residual water, and concentrated
under reduced pressure. The crude was purified by flash chromatography (silica, ethyl
acetate/hexane solvent system) to obtain compound 6 as a white solid (202 mg,
50%)."H NMR (400 MHz, dimethyl sulfoxide-ds) 5 10.87 (d, J = 8.4 Hz, 1H), 10.47 (t,
J=5.4Hz, 1H), 7.37 - 7.25 (m, 15H), 6.91 (d, J = 8.5 Hz, 1H), 4.78 (d, J = 5.6 Hz,
2H), 3.13 = 3.09 (m, 2H), 3.05 — 3.01 (m, 2H). *C NMR (125 MHz, dimethyl sulfoxide-
ds) 6202.63, 202.20, 140.56, 137.13, 128.46, 128.32, 127.72, 127.70, 127.33, 127.13,
61.65,48.31,43.38, 43.29. HRMS (ESI) (m/z): Calcd for C24H24N2S2 [M+H]* 405.1454,
found:471.1460; C24H24N2S2 [M+Na]* 427.1273, found: 427.1276.

S2.9. Receptor 7.

N
I 7 H OM
T]/\)LH e
S

OMe

N-benzhydryl-N*-(3,5-dimethoxybenzyl)succinamide 2 (100 mg, 0.231 mmol) and
Lawesson’s reagent (467 mg, 1.15 mmol) were dissolved in dry tetrahydrofuran (10.0
mL) in a 100 mL two-neck round-bottom flask under a N2 atmosphere. The reaction
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mixture was then stirred at 60 °C overnight (12 h). The progress of the reaction was
monitored by thin-layer chromatography. Upon completion, the solvent was
evaporated under reduced pressure, and aqueous sodium bicarbonate (20 mL) was
added in it to remove byproducts and extracted with ethyl acetate (3 x 30 mL). The
organic layer was washed with brine, dried over anhydrous magnesium sulfate to
remove residual water, and concentrated under reduced pressure. The crude was
purified by flash chromatography (silica, ethyl acetate/hexane solvent system) to
obtain compound 7 as a white solid (209 mg, 45%)."H NMR (400 MHz, acetonitrile-d3)
69.13 (s, 1H), 8.69 (s, 1H), 7.36 — 7.33 (m 4H) 7.30 — 7.29 (m, 2H), 7.26 — 7.25 (m
4H), 6.81 (d, J = 8.1 Hz, 2H), 6.45 (t, J= 2.1 Hz, 2H), 6.38 (t, J= 2.1, 1H),4.72 (d, J =
5.6 Hz, 2H), 3.73 (s, 6H), 3.18 (t, J = 6.6 Hz, 2H), 3.10 (t, J = 6.6 Hz, 2H). 3*C NMR
(125 MHz, chloroform-d) § 202.76, 202.43, 161.30, 139.90, 137.88, 128.97, 128.04,
106.20, 100.35, 63.13, 55.57, 50.78, 45.36, 45.19, 29.85. HRMS (ESI) (m/z): Calcd
for CosH2sN202S2 [M+H]" 465.1592, found:465.1669; C26H28N202S2Na* [M+Na]*
487.1484, found: 487.1480; C26H28N202S2K™ [M+K]* 503.1224, found: 503.1225.

S$2.10. Receptor 8.

N'-benzhydryl-N*-(3,5-bis(trifluoromethyl)benzyl)succinamide 3 (100 mg, 0.2 mmol)
and Lawesson’s reagent (397 mg, 0.98 mmol) were dissolved in dry tetrahydrofuran
(10.0 mL) in a 100 mL two-neck round-bottom flask under N2 atmosphere. The reaction
mixture was stirred at 60 °C overnight (12 h). The progress of the reaction was
monitored by thin-layer chromatography. Upon completion, the solvent was
evaporated under reduced pressure and aqueous sodium bicarbonate (20 mL) was
added to the concentrated residue to remove byproducts and extracted with ethyl
acetate (3 x 30 mL). The organic layer was washed with brine, dried over anhydrous
magnesium sulfate to remove residual water, and concentrated under reduced
pressure. The crude was purified by flash chromatography (silica, ethyl
acetate/hexane solvent system) to obtain compound 8 as a white solid (254 mg,
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47%)."H NMR (500 MHz, chloroform-d) §8.12 (d, J = 8.2 Hz, 1H), 8.02 (t, J = 5.4 Hz,
1H), 7.79 (s, 1H), 7.65 (s, 2H), 7.35 — 7.32 (m, 4H), 7.30 — 7.27 (m, 2H), 7.23 — 7.21
(m, 4H), 6.83 (d, J = 8.1 Hz, 1H), 4.76 (d, J = 5.6 Hz, 2H), 3.22 (s, 4H). 3C NMR (125
MHz, chloroform-d) §204.25, 139.48, 138.33, 131.95 (q, J = 33.4 Hz), 128.73, 128.17,
128.14, 127.86,127.62, 124.05, 121.88, 121.85, 121.82, 121.79, 62.77, 48.53, 44.82,
44.70. HRMS (ESI) (m/z): Calcd for CasHz2FsN2S2 [M+H]* 541.1201, found:541.1214.

S2.11. Receptor 9.

N, N*-dibenzhydrylsuccinamide 4 (100 mg, 0.22 mmol), and Lawesson’s reagent (450
mg, 1.11 mmol) were dissolved in dry tetrahydrofuran (10.0 mL) in a 100 mL two-neck
round-bottom flask under a N2 atmosphere. Next, the reaction mixture was stirred at
60 °C for overnight (12 h). The progress of the reaction was monitored by thin layer
chromatography. Upon completion, the solvent was evaporated under reduced
pressure and aqueous sodium bicarbonate (20 mL) was added to the concentrated
residue to remove byproducts and extracted with ethyl acetate (3 x 30 mL). The
organic (ethyl acetate ) layer was washed with brine, dried over anhydrous magnesium
sulfate to remove residual water, and concentrated under reduced pressure. The crude
was purified by flash chromatography (silica, using ethyl acetate/hexane solvent
system) to obtain compound 9 as a white solid (192 mg, 40%)."H NMR (500 MHz,
acetonitrile-ds) 9.10 (brs, 2H), 7.35 - 7.32 (m, 8H), 7.30 — 7.28 (m, 4H), 7.27 — 7.24
(m, 8H) 6.81 (d, J = 7.9 Hz, 1H), 3.18 (s, 4H)."3C NMR (125 MHz, acetonitrile-ds) &
204.30, 141.56, 129.60, 128.73, 128.55, 63.64, 44.67. HRMS (ESI) (m/z): Calcd for
C3oH2sN2S2 [M+H]* 481.1767, found:481.1776.
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S$2.12. Receptor 10.

N',N*-bis(3,5-bis(trifluoromethyl)benzyl)succinimide 5 (100 mg, 0.18 mmol) and
Lawesson’s reagent (397 mg, 0.9 mmol) were dissolved in dry tetrahydrofuran (10.0
mL) in a 100 mL two-neck round-bottom flask under a N2 atmosphere. The reaction
mixture was stirred at 60 °C for 12 h. The progress of the reaction was monitored by
thin layer chromatography. Upon completion, the solvent was evaporated under
reduced pressure, and aqueous sodium bicarbonate (20 mL) was added to the
concentrated residue to remove byproducts and extracted with ethyl acetate (3 x 30
mL). The organic layer was washed with brine, dried over anhydrous magnesium
sulfate to remove the residual water, and concentrated under reduced pressure. The
crude was purified by flash chromatography (silica, ethyl acetate/hexane solvent
system) to obtain compound 10 as a white solid (58 mg, 55%)."H NMR (500 MHz,
acetonitrile-ds) 5 8.87 (s, 2H), 7.88 (s, 6H), 4.94 (d, J = 5.8 Hz, 4H), 3.14 (s, 4H). 3C
NMR (125 MHz, chloroform-d) 6 204.87, 138.74, 132.40, 132.13, 128.22, 124.33,
122.06, 48.60, 44.07. HRMS (ESI) (m/z): Calcd for C22H16F12N2S2 [M+H]* 601.0636,
found: 601.0648.
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S3 Structural determination using 2D NMR.
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Figure S1. Structural determination of compound 3 using COSY NMR (500 MHz).
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Figure S2. Structural determination of compound 3 using NOESY NMR (500 MHz).
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Figure S3. Structural determination of compound 8 using COSY NMR (500 MHz).
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S4 Binding Studies in Solution

'"H NMR titrations were carried out to determine the binding constant of alll
receptors towards ClI~ anions. A stock solution (5 mM) of each receptor and tetrabutyl
ammonium chloride (TBACI, 500 mM) was prepared in acetonitrile-ds. Each receptor
(0.5 mL, 5 mM) was placed in a NMR tube, and the "H NMR spectrum was recorded
upon incremental addition of TBACI solution. The chemical shifts of interacting N-H
protons were monitored.

"H NMR titrations of the receptors with other anions (Br—, I=, NOs~) were also
carried out using a similar experimental protocol. TBABr, TBAI, and TBANO3 salts
were used as the respective anion sources. Each titration study was repeated to
ensure robustness and reliability of the results. For every set of titrations performed,
fresh stock solutions of receptors (0.5 mL, 5 mM) and the corresponding anion’s stock
solution (500 mM) were prepared in acetonitrile-ds, thus minimizing any potential
sources of variability and retaining consistency throughout experimental procedures.
Similarly, chemical shifts of interacting N-H protons were recorded.

The observed chemical shifts of the N-H protons were plotted against
equivalent total ([G]o/[H]o), and the binding constant values for each anion were
determined using a 1:1 binding model in the BindFit v0.5 program.?3

S14



20.0 Equiv.

15.0 Equiv.

11.0 Equiv.

9.0 Equiv.

7.0 Equiv.

=== == =

5.0 Equiv.

4.0 Equiv.

3.0 Equiv.

2.0 Equiv.

1.5 Equiv.
1.0 Equiv.

0.75 Equiv.

0.5 Equiv.

0.25 Equiv.

0.0 Equiv. J

96 90 84 78 12 66 60
ppm
Figure S5. "H-NMR spectra showing the chemical shift (9) of the N-Ha and N-Hy, peaks

during the titration of 1 with increasing equivalents of TBACI in acetonitrile-ds.

Representative titration spectrum from one of the duplicate experiments.
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Figure S6. Chemical shift () of N-Ha and N-Hy, protons vs. equivalent total ([Glo/[H]o)
were plotted, fitted to 1:1 binding model using BindFit v0.5 program (Nelder—Mead
method). H = host (1) and G = guest (TBACI). Representative titration spectrum from

one of the duplicate experiments.
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Figure S7. "H-NMR spectra showing the chemical shift (9) of the N-Ha and N-Hy, peaks
during the titration of 2 with increasing equivalents of TBACI in acetonitrile-ds.

Representative titration spectrum from one of the duplicate experiments.
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Figure S8. Chemical shift () of N-Ha and N-Hy, protons vs. equivalent total ([Glo/[H]o)
were plotted, fitted to 1:1 binding model using BindFit v0.5 program (Nelder—Mead
method). H = host (2) and G = guest (TBACI). Representative titration spectrum from

one of the duplicate experiments.
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Figure S9. "H-NMR spectra showing the chemical shift (5) of the N-Ha and N-Hp, peaks
during the titration of 3 with increasing equivalents of TBACI in acetonitrile-ds.

Representative titration spectrum from one of the duplicate experiments.
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Figure $10. Chemical shift () of N-Ha and N-Hy protons vs. equivalent total ([G]o/[H]o)

were plotted, fitted to 1:1 binding model using BindFit v0.5 program (Nelder—Mead
method). H = host (3) and G = guest (TBACI). Representative titration spectrum from

one of the duplicate experiments.
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Figure S11. "H-NMR spectra showing the chemical shift (5) of the N-H peaks during

the titration of 4 with increasing equivalents of TBACI in acetonitrile-ds. Representative

titration spectrum from one of the duplicate experiments.
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Figure S12. Chemical shift (o) of N-H protons vs. equivalent total ([G]o/[H]o) were
plotted, fitted to 1:1 binding model using BindFit v0.5 program (Nelder—Mead method).
H = host (4) and G = guest (TBACI). Representative titration spectrum from one of the

duplicate experiments.
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Figure S13. "H-NMR spectra showing the chemical shift (5) of the N-H peaks during

the titration of 5 with increasing equivalents of TBACI in acetonitrile-ds. Representative
titration spectrum from one of the duplicate experiments.
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Figure S14. Chemical shift (6) of N-H protons vs. equivalent total ([G]o/[H]o) were
plotted, fitted to 1:1 binding model using BindFit v0.5 program (Nelder—Mead method).
H = host (5) and G = guest (TBACI). Representative titration spectrum from one of the
duplicate experiments.
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Figure S15. "H-NMR spectra showing the chemical shift () of the N-Ha and N-Hp

peaks during the titration of 6 with increasing equivalents of TBACI in acetonitrile-ds.

Representative titration spectrum from one of the duplicate experiments.
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Figure $16. Chemical shift () of N-Ha and N-Hp protons vs. equivalent total ([G]o/[H]o)
were plotted, fitted to 1:1 binding model using BindFit v0.5 program (Nelder—Mead
method). H = host (6) and G = guest (TBACI). Representative titration spectrum from

one of the duplicate experiments.
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Figure S17. "H-NMR spectra showing the chemical shift () of the N-Ha and N-Hp
peaks during the titration of 7 with increasing equivalents of TBACI in acetonitrile-ds.

Representative titration spectrum from one of the duplicate experiments.
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Figure $18. Chemical shift () of N-Ha and N-Hp protons vs. equivalent total ([Glo/[H]o)
were plotted, fitted to 1:1 binding model using BindFit v0.5 program (Nelder—Mead
method). H = host (7) and G = guest (TBACI). Representative titration spectrum from

one of the duplicate experiments.
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Figure $19. "H-NMR spectra showing the chemical shift () of the N-Ha and N-Hp
peaks during the titration of 8 with increasing equivalents of TBACI in acetonitrile-ds.

Representative titration spectrum from one of the duplicate experiments.
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Figure $20. Chemical shift () of N-Ha and N-Hp protons vs. equivalent total ([Glo/[H]o)

were plotted, fitted to 1:1 binding model using BindFit v0.5 program (Nelder—Mead

method). H = host (8) and G = guest (TBACI). Representative titration spectrum from

one of the duplicate experiments.
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Figure S21. "H-NMR spectra showing the chemical shift (5) of the N-H peaks during
the titration of 10 with increasing equivalents of TBACI in acetonitrile-ds.
Representative titration spectrum from one of the duplicate experiments.
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Figure S22. Chemical shift (0) of N-H protons vs. equivalent total ([G]o/[H]o) were
plotted, fitted to 1:1 binding model using BindFit v0.5 program (Nelder—Mead method).
H = host (10) and G = guest (TBACI). Representative titration spectrum from one of
the duplicate experiments.
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Table S1. Binding constant (Ks; M-") values of receptors upon addition of TBACI using

the 1 :1 non-cooperative model of BindFit program (Nelder—Mead method).

Receptors K, from Set 1 with K, from Set 2 with Average K. "
Error Error

1 31.0£24 % 299+31% 30+3
2 38.9+3.1% 38.6+3.1% 39+4
3 604+£7.1% 58.3+6.9% 50+6
4 328+11% 31.9+21% 32+3
5 49.6+2.0% 494+25% 50+5
6 526.9+3.1% 538.0+4.7 % 530 £+ 50
7 2054+14 % 2994 +14 % 300 £+ 30
8 5351+8.2% 539.4+8.0 % 540 £ 50
9 _a _a _a

10 505.2+4.6 % 505.1+4.8% 510 £ 50

a. Precipitation hinders the determination of its K value.

b. The average binding constants (K;) are rounded to reflect a ~10% experimental uncertainty

in NMR titrations.

S5 Other fitting models for receptors 3 and 8.

Table S2. Binding constant (Ka,; M™") values of receptors upon addition of TBACI using the 1 :

2 non-cooperative model of BindFit program (Nelder—Mead method).

Receptor K, from Set 1 with K, from Set 2 with Average K; ©
Error Error
1 K11 =3956.4 + 142.9 % | K41 =4964.4 + 260.6 % K11 = 4500 + 450
Ki2=31.9+3.2% Ki2=33.3+4.2% Ki2=33%3
2 _a _a _a
3 K11 =1388.9+79.2% | Ky1=2720.1+£148.5% K11 =2100 £ 210
Ki2=65.5+8.3 % Ki2=65.6+8.1% Ki2=66+7
4 K1 =2774.2 £ 32.6 % Ki1=9199+37.2% K11 =1800 + 180
Ki2=30.5+1.2% Ki2=27.7+3.6 % Ki2=29+3
5 _a _a _a
6 K11 =1000.3+4.4 % K11 =1010.6 £4.8 % K11 =1000 £ 100
Ki2=40.1+9.8% Ki2=43.5+10.3 % Ki2=42+4
7 K11=4453+09 % K11 =5384+1.2% K11 =490 + 50
Ki2=60.2+2.3 % Ki2=75.7+£22% Ki2=68+7
8 K11 =17575.9 £ 38.9 % | Ki1=14579.1 £ 351 % K11 =16000 + 1600
Ki2=275.4+£9.0% Ki2=259.3+9.2% Ki2=270 £ 27
9 b b b
10 K11 =4169.6 £ 104 % | K41 =3756.8+12.9% K11 =4000 + 400
Ki2=215.6 +6.0 % Ki2=211.7+8.0% Ki2=210+ 21

a. The data does not fit with this model.

b. Precipitation hinders the determination of its K value.

c. The average binding constants (K,) are rounded to reflect a ~10% experimental uncertainty
in NMR titrations.
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Figure S23. Chemical shift () of N-Ha and N-H, protons vs. equivalent total ([Glo/[H]o) were
plotted, fitted to 1:2 binding model using BindFit v0.5 program (Nelder—-Mead method). H =
host (3) and G = guest (TBACI). Representative titration spectrum from one of the duplicate

experiments.
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Figure S24. Chemical shift () of N-Ha and N-H, protons vs. equivalent total ([Glo/[H]o) were
plotted, fitted to 1:2 binding model using BindFit v0.5 program (Nelder—-Mead method). H =

-0.1 ppm
20 25

host (8) and G = guest (TBACI). Representative titration spectrum from one of the duplicate

experiments.
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Table S3. Binding constant (Ka; M™") values of receptors upon addition of TBACI using the 2 :

1 non-cooperative model of BindFit program (Nelder—Mead method).

Receptor K, from Set 1 with K, from Set 2 with Average K; ©
Error Error
1 Ki1=86.9+11.4 % Ki1=90.9+£11.9% Ki1=89+9
K21=123.9+162% | Kx»=1115+16.2% Ka1=118 £ 12
P2 Ki1=0.3%£83% Ki1t=04277% K11 =0.3+£0.03
K21=361231+4.6 % | K21=2923.0+4.2% K21 = 3300+ 330
3 Ki1=2135+169% | K{1=2353%+17.9% K11 =224 £ 22
K21=1525+211% | K»1=199.6+21.5% K21=176 £ 18
4 Ki1=70.6+5.1% Ki1=54.3+18.8 % Ki1=62+6
Kyi=771+£88% K21=371+£435% Ko1=57+6
5 Ki1=929+39.9 % K11 =62.6+27.9% Ki1=78+8
K21=130.30+73.7 % | K21=53.0%£99.7 % K21=92+9
6 Ki1=844.2+6.8% K11 =855.0+10.2 % K11 =850 + 85
K21=162.6 £17.7 % | K21=166.8 £ 25.65 % K21 =165+ 17
7 _a _a _a
8 Ki1=1272.8+8.8 % | K11=1254.3+9.2% K11 =1300 + 130
K21=1579+139% | K»=162.9+149% K21=160 + 16
9 b b b
10 Ki1=7626+9.1% Ki1=759.7+121% K1 =761+76
K21=29.4+26.1% K21=29.7+34.9% K21=30+%3

a. The data does not fit with this model.

b. Precipitation hinders the determination of its K value.
c. The average binding constants (K,) are rounded to reflect a ~10% experimental uncertainty
in NMR titrations.
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Figure S25. Chemical shift () of N-Ha and N-H, protons vs. equivalent total ([Glo/[H]o) were

plotted, fitted to 2:1 binding model using BindFit v0.5 program (Nelder-Mead method). H =

host (3) and G = guest (TBACI). Representative titration spectrum from one of the duplicate

experiments.
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Figure S26. Chemical shift () of N-Ha and N-H, protons vs. equivalent total ([Glo/[H]o) were
plotted, fitted to 2:1 binding model using BindFit v0.5 program (Nelder-Mead method). H =
host (8) and G = guest (TBACI). Representative titration spectrum from one of the duplicate

experiments.
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Figure S27. "H-NMR spectra showing the chemical shift () of the N-Ha and N-Hp
peaks during the titration of 8 with increasing equivalents of TBABr in acetonitrile-ds.

Representative titration spectrum from one of the duplicate experiments.
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Figure $28. Chemical shift () of N-Ha and N-Hp protons vs. equivalent total ([G]o/[H]o)
were plotted, fitted to 1:1 binding model using BindFit v0.5 program (Nelder—Mead
method). H = host (8) and G = guest (TBABr). Representative titration spectrum from

one of the duplicate experiments.
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Figure S29. "H-NMR spectra showing the chemical shift () of the N-Ha and N-Hp

peaks during the titration of 8 with increasing equivalents of TBAI in acetonitrile-ds.

Representative titration spectrum from one of the duplicate experiments.
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Figure $30. Chemical shift () of N-Ha and N-Hy protons vs. equivalent total ([G]o/[H]o)
were plotted, fitted to 1:1 binding model using BindFit v0.5 program (Nelder—Mead
method). H = host (8) and G = guest (TBAI). Representative titration spectrum from

one of the duplicate experiments.
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Figure S31. "H-NMR spectra showing the chemical shift () of the N-Ha and N-H,
peaks during the titration of 8 with increasing equivalents of TBANO3; in acetonitrile-

ds. Representative titration spectrum from one of the duplicate experiments.
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Figure S$32. Chemical shift (3) of N-Ha and N-Hy protons vs. equivalent total ([G]o/[H]o)
were plotted, fitted to 1:1 binding model using BindFit v0.5 program (Nelder—Mead

method). H = host (8) and G = guest (TBANO3). Representative titration spectrum from
one of the duplicate experiments.

Table S4. Binding constant value of compound 8 towards different anions (CI~, Br—, I~
and NO3™) using the 1:1 binding model of BindFit v0.5 program. This is the average
K, calculated from two independent titrations for each anion.

Receptors | K, (M) for Ka (M) for Ka (M) for Ka (M) for
TBACI TBABr TBAI TBANO3
8 540 + 54 112 + 11 15 +2 32+3

S7 Mass Spectrometric Study

Stock solutions (5 mM) of the receptors and TBACI (500 mM) were prepared in
spectroscopy-grade acetonitrile. The solutions were mixed to provide a final TBACI
concentration of approximately 10 equivalents relative/with respect to each receptor,
followed by further dilution with spectroscopy-grade acetonitrile. The diluted samples

were analyzed by mass spectroscopic analysis in negative ion mode, where it was
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electro-sprayed at a flow rate of 400 yL/min with a capillary voltage of 1.0 kV. ESI-MS
data confirms the existence of a chloride-encapsulated complex.
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Figure S33. Negative mode ESI-MS spectrum of mixture of 3 and TBACI in
acetonitrile.
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Figure S34. Negative mode ESI-MS spectrum of mixture of 4 and TBACI in
acetonitrile.
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Figure S35. Negative mode ESI-MS spectrum of mixture of 8 and TBACI in

acetonitrile.
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Figure S36. Negative mode ESI-MS spectrum of mixture of 9 and TBACI
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S8 Crystal structure details
S8.1. Crystal structure of receptor 3

Figure S37. Single crystal structure of receptor 3.
Computing details

Data collection: Bruker APEXS3; cell refinement: Bruker SAINT, data reduction: Bruker
SAINT; program(s) used to solve structure: SHELXT 2014/5 (Sheldrick, 2014);
program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2017).

Crystal data

CasH22FsN202 Z=2

M, = 508.45 F(000) = 524

Triclinic, P1 Dy = 1.466 Mg m

a=9.5617 (12) A Mo Ka radiation, 2 = 0.71073 A

b =10.8330 (13) A Cell parameters from 9599 reflections
c=11.9272 (14) A 6 = 2.4-40.4°

a =96.483 (5)° u=0.13 mm*

B = 106.465 (5)° T=100K

y =99.458 (5)° Rectangle, colourless

V=1151.9 (2) A3 0.69 x 0.29 x 0.18 mm
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Data collection

Bruker Kappa APEX-II DUO

diffractometer

Rint = 0.136

Radiation source: fine-focus sealed tube

emax = 40.50, emin =1.8°

@ and w scans h=-17-17
115043 measured reflections k=-19-19
14688 independent reflections I=-21-21

9942 reflections with > 20(/)

Refinement

Refinement on F?

O restraints

Least-squares matrix: full

Hydrogen site location: mixed

RIF? > 20(F?)] = 0.058

H atoms treated by a mixture of

independent and constrained refinement

wR(F?) = 0.175 w = 1/[0%(Fs2) + (0.0922P)2 + 0.2194P]
where P = (Fo? + 2F?)/3
S=1.03 (A/O')max < 0.001

14688 reflections

APmax = 0.92 e A3

331 parameters

Apmin =-0.51¢ A3

Special details

Geometry. All e.s.d.’s (except the e.s.d. in the dihedral angle between two |.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.’s are taken into account

individually in the estimation of e.s.d.’s in distances, angles and torsion angles;

correlations between e.s.d.’s in cell parameters are only used when they are defined

by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.’s is used for

estimating e.s.d.’s involving |.s. planes.
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Fractional atomic coordinates and isotropic or equivalent isotropic displacement

parameters (A2)

X y z Uiso™/Ueq
C1 0.82010 (12) | 0.84945 (9) 0.12801 (9) | 0.01808 (16)
H1 0.904963 0.914202 0.138315 0.022*
Cc2 0.67882 (13) | 0.86650 (10) | 0.06761 (9) | 0.01970 (17)
H2 0.667049 0.942946 0.037497 0.024*
C3 0.55527 (12) | 0.77110(10) | 0.05167 (9) | 0.02094 (18)
H3 0.458651 0.781845 0.009952 0.025*
C4 0.57305 (11) | 0.65935 (9) 0.09698 (9) | 0.01684 (15)
H4 0.488075 0.594475 0.086025 0.020*
c5 0.71367 (10) | 0.64196 (8) | 0.15793 (7) | 0.01242 (13)
C6 0.83785 (10) | 0.73821 (9) 0.17337 (8) | 0.01536 (14)
H6 0.934586 0.727603 0.214942 0.018*
Cc7 0.89125 (12) | 0.24100 (10) | 0.01966 (10) | 0.02216 (19)
H7 0.925550 0.178000 -0.021417 0.027*
C8 0.86894 (11) | 0.35122(10) | -0.02569 (9) | 0.01898 (17)
H8 0.887521 0.363602 -0.098185 0.023*
C9 0.81916 (10) | 0.44396 (9) 0.03529 (8) | 0.01473 (14)
H9 0.804444 0.519368 0.004075 0.018*
C10 0.79095 (9) 0.42685 (8) 0.14130 (8) | 0.01236 (13)
C11 0.81326 (11) | 0.31523 (9) 0.18590 (9) | 0.01751 (16)
H11 0.794136 0.302240 0.258072 0.021*
c12 0.86312 (12) | 0.22332 (10) | 0.12554 (10) | 0.02168 (18)
H12 0.878113 0.147933 0.156711 0.026*
C13 0.72909 (9) 0.52107 (8) 0.20859 (7) | 0.01182 (13)
H13 0.626691 0.477583 0.204629 0.014*
C14 0.75307 (9) | 0.55007 (8) | 0.42047 (7) | 0.01123 (12)

Continued.....
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C15 0.85551 (10) | 0.60722(8) | 0.54424 (8) | 0.01373 (14)
H15A 0.880447 0.700645 0.550588 0.016*
H15B 0.949427 0.575746 0.557369 0.016*
C16 0.78631(10) | 0.57491(8) | 0.64057 (8) | 0.01351 (14)
H16A 0.849107 0.627389 0.717292 0.016*
H16B 0.686786 0.597102 0.621939 0.016*
C17 0.77009 (9) | 0.43671(8) | 0.65319(7) | 0.01133 (13)
C18 0.60501 (10) | 0.25233(8) | 0.68090 (8) | 0.01418 (14)
H18A 0.583346 0.249397 0.757066 0.017*
H18B 0.693246 0.214257 0.684962 0.017*
C19 0.47371(9) | 0.17416(8) | 0.58183(8) | 0.01221 (13)
C20 0.45608 (10) | 0.18816(8) | 0.46387 (8) | 0.01322 (14)
H20 0.524086 0.250927 0.445478 0.016*
c21 0.33905 (10) | 0.11020(8) | 0.37369(8) | 0.01359 (14)
c22 0.23734 (10) | 0.01781(8) | 0.39875(8) | 0.01420 (14)
H22 0.157709 -0.035580 0.336574 0.017*
c23 0.25473 (10) | 0.00551(8) | 0.51586 (8) | 0.01332 (13)
C24 0.37156 (10) | 0.08330(8) | 0.60755(8) | 0.01337 (14)
H24 0.381483 0.074315 0.687590 0.016*
C25 0.15285 (11) | -0.09710 (9) | 0.54612(9) | 0.01660 (15)
C26 0.32463 (12) | 0.11873(10) | 0.24653 (8) | 0.01813 (16)
N1 0.81749 (8) | 0.55057 (8) | 0.33396(7) | 0.01290 (12)
H1N 0.9127 (17) | 0.5741(15) | 0.3510 (14) 0.015*
N2 0.63989 (8) | 0.38338(7) | 0.66624 (7) | 0.01312(12)
H2N 0.5698 (18) | 0.4244 (15) | 0.6534 (14) 0.016*
o1 0.61860 (7) | 0.50861(7) | 0.40184 (6) | 0.01664 (12)
02 0.87230(8) | 0.37906(7) | 0.65612(7) | 0.01768 (13)

Continued.....
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F1 0.40482 (12) 0.22417 (9) 0.23246 (7) 0.0411 (2)
F2 0.36550 (14) 0.02134 (9) 0.19445 (7) 0.0440 (3)
F3 0.18424 (10) | 0.11483 (12) 0.18280 (8) 0.0440 (2)
F4 0.02699 (8) -0.14398 (7) 0.45728 (6) 0.02471 (14)
F5 0.11317 (8) -0.05710 (7) 0.64095 (7) 0.02608 (15)
F6 0.21837 (8) -0.19500 (6) 0.57291 (7) 0.02423 (14)
Atomic displacement parameters (A?)
U11 U22 U33 U12 U13 U23
C1 0.0228 (4)|0.0122 (3)|0.0182 (4)| 0.0010 (3) | 0.0064 (3) | 0.0020 (3)
C2 0.0278 (5)|0.0144 (4)|0.0155 (4)| 0.0050 (3) | 0.0040 (3) | 0.0031 (3)
C3 0.0212 (4)|0.0188 (4)|0.0195 (4)| 0.0062 (3) |-0.0007 (3)| 0.0042 (3)
C4 0.0146 (3)|0.0164 (4)|0.0160 (4)| 0.0019 (3) | 0.0003 (3) | 0.0018 (3)
C5 0.0127 (3)|0.0126 (3)|0.0109 (3)| 0.0016 (2) | 0.0028 (2) | 0.0011 (2)
C6 0.0149 (3)|0.0130 (3)|0.0171 (4)| 0.0011 (3) | 0.0043 (3) | 0.0023 (3)
C7 0.0208 (4)|0.0162 (4)|0.0260 (5)| 0.0029 (3) | 0.0050 (4) |-0.0038 (3)
C8 0.0189 (4)|0.0169 (4)|0.0194 (4)|-0.0005 (3)| 0.0073 (3) |-0.0021 (3)
C9 0.0155 (3)|0.0130 (3)|0.0146 (3)(-0.0005 (3)| 0.0053 (3) | 0.0015 (3)
C10 0.0111 (3)|0.0109 (3)|0.0128 (3)(-0.0006 (2)| 0.0018 (2) | 0.0017 (2)
C11 0.0203 (4)|0.0126 (3)|0.0167 (4)| 0.0010 (3) | 0.0019 (3) | 0.0038 (3)
C12 0.0241 (5)|0.0122 (4)|0.0244 (4)| 0.0033 (3) | 0.0014 (4) | 0.0018 (3)
C13 0.0097 (3)|0.0132 (3)|0.0113 (3)|-0.0001 (2)| 0.0025 (2) | 0.0027 (2)
C14 0.0104 (3)|0.0107 (3)|0.0128 (3)| 0.0008 (2) | 0.0041 (2) | 0.0037 (2)
C15 0.0140 (3)|0.0129 (3)|0.0123 (3)|-0.0025 (3)| 0.0042 (3) | 0.0017 (2)
C16 0.0162 (3)|0.0105 (3)|0.0133 (3)[-0.0014 (3)| 0.0065 (3) | 0.0009 (2)
C17 0.0102 (3)|0.0114 (3)|0.0108 (3)(-0.0010 (2)| 0.0030 (2) | 0.0008 (2)
C18 0.0134 (3)|0.0120 (3)|0.0145 (3)|-0.0024 (3)| 0.0026 (3) | 0.0035 (3)
Continued.....
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C19 0.0113 (3)[{0.0109 (3)|0.0134 (3)|-0.0007 (2)| 0.0039 (2) | 0.0022 (2)
C20  |0.0140 (3)[0.0117 (3)[0.0140 (3)|-0.0006 (2)| 0.0059 (3) | 0.0029 (3)
C21 0.0155 (3)[0.0129 (3)|0.0120 (3)| 0.0010 (3) | 0.0047 (3) | 0.0021 (2)
C22  |0.0143 (3)[0.0124 (3)[0.0140 (3)|-0.0008 (3)| 0.0040 (3) | 0.0006 (3)
C23  |0.0126 (3)[0.0116 (3)[0.0147 (3)|-0.0018 (2)| 0.0049 (3) | 0.0018 (3)
C24 0.0136 (3)[0.0122 (3)|0.0131 (3)|-0.0017 (2)| 0.0045 (3) | 0.0026 (2)
C25  |0.0159 (4)[0.0140 (3)[0.0179 (4)|-0.0033 (3)| 0.0059 (3) | 0.0021 (3)
C26  |0.0229 (4)[0.0171 (4)[0.0135 (3)| 0.0017 (3) | 0.0053 (3) | 0.0027 (3)
N1 0.0088 (3)[0.0179 (3)[0.0109 (3)|-0.0008 (2)| 0.0031 (2) | 0.0031 (2)
N2 0.0103 (3)|0.0106 (3)[0.0180 (3)|-0.0008 (2)| 0.0053 (2) | 0.0025 (2)
O1 0.0091 (2)[0.0229 (3)|0.0172 (3)|-0.0003 (2)| 0.0047 (2) | 0.0037 (2)
02 0.0118 (3)|0.0164 (3)[0.0258 (3)| 0.0025 (2) | 0.0071 (2) | 0.0048 (2)
F1 0.0640 (6)|0.0336 (4)[{0.0186 (3)|-0.0169 (4)| 0.0164 (4) | 0.0051 (3)
F2 0.0861 (7)|0.0398 (5)[0.0179 (3)| 0.0363 (5) | 0.0208 (4) | 0.0059 (3)
F3 0.0295 (4)|0.0799 (8)[0.0233 (4)| 0.0129 (4) | 0.0024 (3) | 0.0245 (4)
F4 0.0179 (3)(0.0232 (3)[0.0247 (3)|-0.0103 (2)| 0.0015 (2) | 0.0045 (2)
F5 0.0298 (3)[0.0232 (3)[0.0265 (3)|-0.0059 (3)| 0.0186 (3) | 0.0002 (3)
F6 0.0271 (3)[0.0162 (3)|0.0311 (3)| 0.0010 (2) | 0.0110 (3) | 0.0104 (2)
Geometric parameters (A, °)
C1—C6 1.3914 (13) C15—H15A 0.9900
C1—C2 1.3922 (15) C15—H15B 0.9900
C1—H1 0.9500 C16—C17 1.5086 (12)
C2—C3 1.3881 (16) C16—H16A 0.9900
C2—H2 0.9500 C16—H16B 0.9900
C3—C4 1.3964 (14) C17—02 1.2380 (11)
C3—H3 0.9500 C17—N2 1.3422 (11)
Continued.....
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C4—C5 1.3899 (13) C18—N2 1.4459 (12)
C4—H4 0.9500 C18—C19 1.5078 (12)
C5—C6 1.3989 (13) C18—H18A 0.9900
C5—C13 1.5144 (12) C18—H18B 0.9900
C6—H6 0.9500 C19—C24 1.3924 (12)
c7—C8 1.3886 (16) C19—C20 1.3975 (12)
C7—C12 1.3907 (17) C20—C21 1.3872 (13)
C7—H7 0.9500 C20—H20 0.9500
C8—C9 1.3977 (13) C21—C22 1.3962 (13)
C8—H8 0.9500 C21—C26 1.4984 (13)
C9—C10 1.3912 (13) C22—C23 1.3836 (13)
C9—H9 0.9500 C22—H22 0.9500
C10—C11 1.3987 (13) C23—C24 1.3943 (12)
C10—C13 1.5225 (12) C23—C25 1.4997 (12)
C11—C12 1.3876 (15) C24—H24 0.9500
C11—H11 0.9500 C25—F4 1.3356 (12)
C12—H12 0.9500 C25—F5 1.3408 (12)
C13—N1 1.4626 (11) C25—F6 1.3419 (12)
C13—H13 1.0000 C26—F1 1.3226 (13)
C14—01 1.2370 (10) C26—F2 1.3330 (13)
C14—N1 1.3433 (11) C26—F3 1.3331 (13)
C14—C15 1.5155 (12) N1—H1N 0.862 (16)
C15—C16 1.5251 (12) N2—H2N 0.851 (16)
C6—C1—C2 120.45 (9) C17—C16—C15 113.21 (7)
C6—C1—H1 119.8 C17—C16—H16A 108.9
C2—C1—H1 119.8 C15—C16—H16A 108.9

Continued.....
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C3—C2—C1 119.59 (9) C17—C16—H16B 108.9
C3—C2—H2 120.2 C15—C16—H16B 108.9
C1—C2—H2 120.2 H16A—C16—H16B 107.7
C2—C3—C4 119.98 (9) 02—C17—N2 122.92 (8)
C2—C3—H3 120.0 02—C17—C16 121.99 (8)
C4—C3—H3 120.0 N2—C17—C16 115.02 (7)
C5—C4—C3 120.74 (9) N2—C18—C19 113.03 (7)
C5—C4—H4 119.6 N2—C18—H18A 109.0
C3—C4—H4 119.6 C19—C18—H18A 109.0
C4—C5—C6 119.04 (8) N2—C18—H18B 109.0
C4—C5—C13 119.54 (8) C19—C18—H18B 109.0
C6—C5—C13 121.41 (8) H18A—C18—H18B 107.8
C1—C6—C5 120.20 (9) C24—C19—C20 119.41 (8)
C1—C6—H6 119.9 C24—C19—C18 119.64 (8)
C5—C6—H6 119.9 C20—C19—C18 120.90 (8)
C8—C7—C12 119.65 (9) C21—C20—C19 119.85 (8)
C8—C7—H7 120.2 C21—C20—H20 120.1
C12—C7—H7 120.2 C19—C20—H20 120.1
C7—C8—C9 120.01 (10) C20—C21—C22 121.03 (8)
C7—C8—H8 120.0 C20—C21—C26 120.31 (8)
C9—C8—H8 120.0 C22—C21—C26 118.57 (8)
C10—C9—C8 120.60 (9) C23—C22—C21 118.73 (8)
C10—C9—H9 119.7 C23—C22—H22 120.6
C8—C9—H9 119.7 C21—C22—H22 120.6
C9—C10—C11 118.88 (8) C22—C23—C24 120.96 (8)
C9—C10—C13 123.10 (8) C22—C23—C25 120.36 (8)
C11—C10—C13 117.94 (8) C24—C23—C25 118.60 (8)

Continued.....
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C12—C11—C10 120.52 (9) C19—C24—C23 120.01 (8)
C12—C11—H11 119.7 C19—C24—H24 120.0
C10—C11—H11 119.7 C23—C24—H24 120.0
C11—C12—C7 120.34 (10) F4—C25—F5 106.86 (8)
C11—C12—H12 119.8 F4—C25—F6 106.96 (8)
C7T—C12—H12 119.8 F5—C25—F6 105.91 (8)
N1—C13—C5 110.50 (7) F4—C25—C23 112.66 (8)
N1—C13—C10 110.31 (7) F5—C25—C23 112.57 (8)
C5—C13—C10 114.99 (7) F6—C25—C23 111.45 (8)
N1—C13—H13 106.9 F1—C26—F2 107.43 (10)
C5—C13—H13 106.9 F1—C26—F3 106.28 (10)
C10—C13—H13 106.9 F2—C26—F3 105.79 (10)
01—C14—N1 123.12 (8) F1—C26—C21 113.46 (8)
01—C14—C15 121.25 (8) F2—C26—C21 111.45 (8)
N1—C14—C15 115.62 (7) F3—C26—C21 111.97 (9)
C14—C15—C16 112.67 (7) C14—N1—C13 121.66 (7)
C14—C15—H15A 109.1 C14—N1—H1N 120.4 (10)
C16—C15—H15A 109.1 C13—N1—H1N 117.8 (10)
C14—C15—H15B 109.1 C17—N2—C18 122.87 (8)
C16—C15—H15B 109.1 C17—N2—H2N 118.2 (11)
H15A—C15—H15B 107.8 C18—N2—H2N 118.1 (11)
C6—C1—C2—C3 -0.66 (15) | C24—C19—C20—C21 | -1.16 (13)
C1—C2—C3—C4 0.54 (16) | C18—C19—C20—C21 | 176.36 (8)
C2—C3—C4—C5 -0.19 (16) | C19—C20—C21—C22 | 0.35(13)
C3—C4—C5—C6 -0.04 (14) | C19—C20—C21—C26 | -176.11 (8)
C3—C4—C5—C13 178.55 (9) | C20—C21—C22—C23 | 0.32 (14)
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C2—C1—C6—C5 0.44 (15) | C26—C21—C22—C23 | 176.84 (8)
C4—C5—C6—CH1 -0.08 (14) | C21—C22—C23—C24 | -0.18 (14)
C13—C5—C6—C1 -178.65 (8) | C21—C22—C23—C25 | -176.70 (8)
C12—C7—C8—C9 0.31(16) | C20—C19—C24—C23 | 1.30 (13)
C7—C8—C9—C10 -0.26 (15) | C18—C19—C24—C23 | -176.25 (8)
C8—C9—C10—C11 0.01 (13) | C22—C23—C24—C19 | -0.64 (14)
C8—C9—C10—C13 | -176.78 (8) | C25—C23—C24—C19 | 175.94 (8)
C9—C10—C11—C12 | 0.19(14) | C22—C23—C25—F4 | -18.63 (13)
C13—C10—C11—C12 | 177.14(9) | C24—C23—C25—F4 | 164.77 (8)
C10—C11—C12—C7 | -0.14(15) | C22—C23—C25—F5 | -139.55 (9)
C8—C7—C12—C11 -0.11 (16) | C24—C23—C25—F5 | 43.85(12)
C4—C5—C13—N1 -128.41(9) | C22—C23—C25—F6 | 101.62 (10)
C6—C5—C13—N1 50.15 (11) | C24—C23—C25—F6 | -74.98 (11)
C4—C5—C13—C10 | 105.92(9) | C20—C21—C26—F1 | -16.78 (14)
C6—C5—C13—C10 | -75.52 (10) | C22—C21—C26—F1 | 166.67 (10)
C9—C10—C13—N1 | -131.28(9) | C20—C21—C26—F2 | 104.64 (11)
C11—C10—C13—N1 | 51.91 (10) | C22—C21—C26—F2 | -71.91 (12)
C9—C10—C13—C5 | -5.51(12) | C20—C21—C26—F3 | -137.08 (10)
C11—C10—C13—C5 | 177.67 (8) | C22—C21—C26—F3 | 46.37 (13)
01—C14—C15—C16 | 15.57 (12) | O1—C14—N1—C13 10.17 (13)
N1—C14—C15—C16 | -165.88(8) | C15—C14—N1—C13 | -168.35 (8)
C14—C15—C16—C17 | 69.32(10) | C5—C13—N1—C14 98.82 (9)
C15—C16—C17—02 | 45.94 (12) | C10—C13—N1—C14 | -132.92 (8)
C15—C16—C17—N2 | -136.90 (8) | 02—C17—N2—C18 -2.16 (14)
N2—C18—C19—C24 | -140.99 (8) | C16—C17—N2—C18 | -179.29 (8)
N2—C18—C19—C20 | 41.49(12) | C19—C18—N2—C17 | -117.51(9)
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Hydrogen-bond geometry (A, °)

D—H---A D—H H--A DA D—H---A
C15—H15A--F4 0.99 2.56 3.3424 (11) 136
N1—H1N:--O2i 0.862 (16) | 2.063 (16) | 2.9036 (11) | 164.9 (15)
N2—H2N---O1ii 0.851(16) | 2.018(16) | 2.8573(11) | 168.6 (15)

Symmetry codes: (i) x+1, y+1, z; (i) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1.
Document origin: publCIF [Westrip, S. P. (2010). J. Apply. Cryst., 43, 920-925].

S8.2. Crystal structure of receptor 4

Figure S38. Crystal structure of receptor 4.

Computing details
Data collection: Bruker APEX3; cell refinement: Bruker SAINT; data reduction: Bruker

SAINT; program(s) used to solve structure: SHELXT 2014/5 (Sheldrick, 2014);
program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2017).

Crystal data
C30H2sCloN202 F(000) = 952
M, = 448.54 Dx = 1.254 Mg m3

Monoclinic, P21/n
a=9.5813 (14) A
b=27.725 (4) A

Cu Ka radiation, | = 1.54184 A

Cell parameters from 9949 reflections
6 = 3.2-68.6°
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c=9.8074 (15) A u =0.62 mm*

B =114.246 (6)° T=100K

V =2375.4 (6) A3 Rectangle, colourless
Z=4 0.29 x 0.12 x 0.04 mm

Data collection

Bruker Kappa APEX-II DUO 4339 independent reflections

diffractometer

Radiation source: fine-focus sealed tube |3960 reflections with /> 20(/)

TRIUMPH curved graphite Rint = 0.037

monochromator

@ and w scans Bmax = 68.7°, Omin = 3.2°

Absorption correction: multi-scan h=-10-11

SADABS (Krause et al., 2015)

Tiin = 0.769, Tmax = 0.929 k =-33-33

21807 measured reflections [=-11-11

Refinement

Refinement on F? 0 restraints

Least-squares matrix: full Hydrogen site location: mixed

R[F? > 20(F?)] = 0.038 H atoms treated by a mixture of
independent and constrained refinement

wR(F?) = 0.109 w = 1/[0%(Fo?) + (0.0558P)? + 0.8371P]
where P = (Fo? + 2F?)/3

S=1.09 (A/O)max = 0.001

4339 reflections APmax = 0.34 e A3

313 parameters APmin = -0.27 e A

Special details

Geometry. All e.s.d.’s (except the e.s.d. in the dihedral angle between two |.s. planes) are
estimated using the full covariance matrix. The cell e.s.d.’s are taken into account individually
in the estimation of e.s.d.’s in distances, angles and torsion angles; correlations between

e.s.d.’s in cell parameters are only used when they are defined by crystal symmetry. An
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approximate (isotropic) treatment of cell e.s.d.’s is used for estimating e.s.d.’s involving I.s.

planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement

parameters (A2)

% y z Uiso*/Ueq
C1 0.65480 (16) 0.24366 (5) 0.17902 (14) 0.0238 (3)
H1 0.614173 0.212831 0.140858 0.029*
C2 0.81063 (16) 0.25018 (5) 0.25166 (15) 0.0226 (3)
H2 0.877807 0.223779 0.263299 0.027*
C3 0.86992 (15) 0.29518 (5) 0.30794 (14) 0.0194 (3)
H3 0.977587 0.299269 0.358291 0.023*
C4 0.77372 (14) 0.33434 (4) 0.29156 (13) 0.0167 (3)
C5 0.61638 (15) 0.32738 (5) 0.21786 (14) 0.0216 (3)
H5 0.548714 0.353669 0.205771 0.026*
C6 0.55775 (16) 0.28238 (5) 0.16199 (15) 0.0254 (3)
H6 0.450182 0.278051 0.111644 0.030*
C7 1.11993 (15) 0.38584 (4) 0.52896 (14) 0.0199 (3)
H7 1.094419 0.381363 0.612042 0.024*
C8 1.27259 (15) 0.38824 (5) 0.55129 (15) 0.0232 (3)
H8 1.350828 0.384894 0.649289 0.028*
C9 1.31139 (15) 0.39547 (5) 0.43159 (16) 0.0236 (3)
H9 1.415900 0.396855 0.447049 0.028*
C10 1.19716 (16) 0.40067 (5) 0.28947 (15) 0.0244 (3)
H10 1.222959 0.406068 0.206969 0.029*
C11 1.04462 (15) 0.39800 (5) 0.26731 (14) 0.0217 (3)
H11 0.966584 0.401756 0.169378 0.026*
C12 1.00456 (14) 0.38991 (4) 0.38644 (13) 0.0163 (3)
C13 0.83893 (14) 0.38299 (4) 0.36255 (13) 0.0163 (3)
H13 0.837582 0.383094 0.463964 0.020*
C14 0.66647 (14) 0.45080 (4) 0.33867 (13) 0.0164 (3)
C15 0.58686 (15) 0.49406 (4) 0.24576 (13) 0.0176 (3)
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H15A 0.550294 0.485757 0.138476 0.021*
H15B 0.661245 0.520820 0.266847 0.021*
C16 0.45229 (14) | 051081 (4) | 0.27708 (14) | 0.0176 (3)
H16A 0.380529 0.483547 0.261097 0.021*
H16B 0.489669 0.520723 0.383159 0.021*
C17 0.36749 (14) | 055257 (4) | 0.17837 (13) | 0.0149 (3)
C18 0.19710 (13) | 0.62081 (4) | 0.15359 (13) | 0.0148 (3)
H18 0.198430 0.620068 0.052189 0.018"*
C19 0.03230 (14) | 0.60936 (4) | 0.13035(13) | 0.0158 (3)
C20 -0.01810 (15) | 0.56165 (4) | 0.11503 (14) | 0.0197 (3)
H20 0.052259 0.536236 0.126132 0.024*
c21 -0.16938 (15) | 0.55080 (5) | 0.08385(14) | 0.0219 (3)
H21 -0.201636 0.518100 0.074383 0.026
c22 -0.27392 (15) | 0.58744 (5) | 0.06640 (14) | 0.0205 (3)
H22 -0.377928 0.580050 0.043722 0.025*
C23 -0.22490 (14) | 0.63486 (5) | 0.08242 (13) | 0.0194 (3)
H23 -0.295681 0.660154 0.071161 0.023"*
C24 -0.07324 (14) | 0.64579 (4) | 0.11481(13) | 0.0172 (3)
H24 -0.041019 0.678516 0.126507 0.021*
C25 0.24908 (13) | 0.67092 (4) | 0.21548 (13) | 0.0156 (3)
C26 0.22720 (14) | 0.70862 (5) | 0.11515(14) | 0.0187 (3)
H26 0.187615 0.702087 0.010960 0.022*
c27 0.26259 (15) | 0.75557 (5) | 0.16573 (15) | 0.0213 (3)
H27 0.244752 0.781166 0.096146 0.026
C28 0.32378 (15) | 0.76524 (5) | 0.31717 (15) | 0.0222 (3)
H28 0.348974 0.797402 0.352003 0.027
C29 0.34833 (15) | 0.72779 (5) | 041831 (14) | 0.0222 (3)
H29 0.391183 0.734293 0.522612 0.027*
C30 0.31044 (14) | 0.68092 (4) | 0.36742(14) | 0.0183(3)
H30 0.326620 0.655454 0.437112 0.022*
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N1 0.74273 (12) 0.42302 (4) 0.28014 (12) 0.0166 (2)
H1N 0.7288 (17) 0.4288 (5) 0.1868 (18) 0.020*
N2 0.30102 (12) 0.58298 (4) 0.24027 (11) 0.0153 (2)
H2N 0.3070 (17) 0.5756 (5) 0.3317 (18) 0.018*
O1 0.66426 (11) 0.44278 (3) 0.46155 (10) 0.0236 (2)
02 0.35740 (10) 0.55702 (3) 0.04918 (9) 0.0194 (2)
Atomic displacement parameters (A?)
U11 U22 U33 U12 U13 U23
C1 0.0330 (8)|0.0192 (6)|0.0182 (6)|-0.0058 (5)(0.0094 (6)| 0.0001 (5)
C2 0.0280 (7)|0.0177 (6)|0.0228 (6)| 0.0029 (5) {0.0111 (6)| 0.0020 (5)
C3 0.0198 (6)|0.0202 (6)|0.0175 (6)| 0.0014 (5) {0.0070 (5)| 0.0022 (5)
C4 0.0195 (6)|0.0179 (6)|0.0138 (6)| 0.0002 (5) {0.0078 (5)| 0.0024 (5)
C5 0.0183 (6)|0.0224 (7)|0.0224 (6)| 0.0026 (5) {0.0066 (5)| 0.0028 (5)
C6 0.0215 (7)|0.0278 (7)|0.0230 (7)|-0.0056 (6)[0.0051 (6)| 0.0017 (5)
C7 0.0223 (7)|0.0190 (6)|0.0181 (6)|-0.0004 (5)(0.0081 (5)| 0.0010 (5)
C8 0.0191 (7)|0.0243 (7)|0.0208 (6)|-0.0015 (5)(0.0027 (5)| 0.0007 (5)
C9 0.0184 (6)|0.0229 (7)|0.0289 (7)|-0.0036 (5)[0.0091 (6)|-0.0029 (5)
C10 0.0252 (7)|0.0292 (7)|0.0218 (7)|-0.0061 (6)[0.0128 (6)|-0.0034 (5)
C11 0.0198 (7)|0.0285 (7)|0.0155 (6)|-0.0027 (5)[0.0060 (5)|-0.0015 (5)
C12 0.0190 (6)|0.0133 (6)|0.0163 (6)| 0.0002 (5) [0.0068 (5)|-0.0011 (4)
C13 0.0179 (6)|0.0164 (6)|0.0141 (6)| 0.0020 (5) {0.0062 (5)| 0.0018 (4)
C14 0.0162 (6)|0.0172 (6)|0.0150 (6)|-0.0002 (5)(0.0057 (5)| 0.0003 (5)
C15 0.0213 (6)|0.0173 (6)|0.0154 (6)| 0.0024 (5) {0.0089 (5)| 0.0023 (5)
C16 0.0196 (6)|0.0173 (6)|0.0177 (6)| 0.0027 (5) {0.0095 (5)| 0.0024 (5)
C17 0.0144 (6)|0.0147 (6)|0.0147 (6)|-0.0028 (5)[0.0051 (5)|-0.0010 (4)
C18 0.0154 (6)|0.0155 (6)|0.0129 (6)| 0.0020 (5) {0.0052 (5)| 0.0015 (4)
C19 0.0175 (6)|0.0183 (6)|0.0113 (5)|-0.0006 (5)[0.0056 (5)| 0.0007 (4)
C20 0.0222 (7)|0.0166 (6)|0.0201 (6)| 0.0005 (5) [0.0087 (5)|-0.0008 (5)
C21 0.0247 (7)|0.0206 (6)|0.0209 (7)|-0.0058 (5)[0.0098 (6)|-0.0018 (5)
Continued.....
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C22 0.0173 (6)]0.0289 (7)0.0150 (6)[-0.0037 (5)[0.0064 (5)|-0.0001 (5)
C23 0.0184 (6)]0.0240 (6)[0.0158 (6)| 0.0036 (5) [0.0070 (5)| 0.0022 (5)
C24 0.0192 (6)|0.0163 (6)[0.0147 (6)| 0.0000 (5) [0.0055 (5)| 0.0013 (4)
C25 0.0130 (6)|0.0168 (6)[0.0177 (6)| 0.0005 (5) [0.0070 (5)| 0.0005 (5)
C26 0.0181 (6)]0.0206 (6)[0.0166 (6)[-0.0011 (5)]0.0064 (5)| 0.0011 (5)
C27 0.0224 (7)]0.0176 (6)[0.0240 (7)[-0.0012 (5)[0.0096 (5)| 0.0034 (5)
C28 0.0232 (7)]0.0176 (6)0.0261 (7)[-0.0038 (5)[0.0107 (6)]-0.0033 (5)
C29 0.0235 (7)]0.0242 (7)0.0182 (6)[-0.0029 (5)[0.0077 (5)|-0.0035 (5)
C30 0.0186 (6)]0.0184 (6)[0.0176 (6)| 0.0003 (5) [0.0071 (5)| 0.0019 (5)
N1 0.0204 (5)[0.0170 (5)[0.0130 (5)| 0.0042 (4) [0.0075 (4)| 0.0033 (4)
N2 0.0179 (5)|0.0162 (5)[0.0120 (5)| 0.0030 (4) [0.0062 (4)| 0.0019 (4)
o1 0.0296 (5)|0.0277 (5)[0.0178 (5)| 0.0103 (4) [0.0140 (4)| 0.0063 (4)
02 0.0243 (5)|0.0207 (5)[0.0148 (4)] 0.0040 (4) [0.0095 (4)| 0.0019 (3)
Geometric parameters (A, °)
C1—C2 1.377 (2) C16—H16A 0.9900
C1—C6 1.385 (2) C16—H16B 0.9900
C1—H1 0.9500 C17—02 1.2366 (15)
C2—C3 1.3880 (18) C17—N2 1.3425 (16)
C2—H2 0.9500 C18—N2 1.4558 (15)
C3—C4 1.3902 (18) C18—C25 1.5160 (16)
C3—H3 0.9500 C18—C19 1.5331 (17)
C4—C5 1.3919 (18) C18—H18 1.0000
C4—C13 1.5288 (17) C19—C24 1.3926 (18)
C5—C6 1.3855 (19) C19—C20 1.3950 (17)
C5—H5 0.9500 C20—C21 1.3860 (19)
C6—H6 0.9500 C20—H20 0.9500
C7—C12 1.3854 (18) C21—C22 1.3868 (19)
C7r—C8 1.3889 (19) C21—H21 0.9500
Cr—H7 0.9500 C22—C23 1.3832 (19)

Continued.....
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C8—C9 1.384 (2) C22—H22 0.9500
C8—H8 0.9500 C23—C24 1.3876 (18)
C9—C10 1.381 (2) C23—H23 0.9500
C9—H9 0.9500 C24—H24 0.9500
C10—C11 1.3885 (19) C25—C30 1.3869 (17)
C10—H10 0.9500 C25—C26 1.3911 (17)
C11—C12 1.3896 (18) C26—C27 1.3848 (18)
C11—H11 0.9500 C26—H26 0.9500
C12—C13 1.5181 (17) C27—C28 1.3807 (19)
C13—N1 1.4571 (15) C27—H27 0.9500
C13—H13 1.0000 C28—C29 1.3876 (19)
C14—O1 1.2342 (16) C28—H28 0.9500
C14—N1 1.3420 (16) C29—C30 1.3860 (18)
C14—C15 1.5098 (17) C29—H29 0.9500
C15—C16 1.5159 (17) C30—H30 0.9500
C15—H15A 0.9900 N1—H1IN 0.883 (16)
C15—H15B 0.9900 N2—H2N 0.898 (16)
C16—C17 1.5139 (16)
C2—C1—C6 119.51 (12) C17—C16—H16B 109.1
C2—C1—H1 120.2 C15—C16—H16B 109.1
C6—C1—H1 120.2 H16A—C16—H16B 107.8
C1—C2—C3 120.23 (12) 02—C17—N2 123.28 (11)
C1—C2—H2 119.9 02—C17—C16 121.81 (11)
C3—C2—H2 119.9 N2—C17—C16 114.88 (10)
C2—C3—C4 120.83 (12) N2—C18—C25 113.14 (10)
C2—C3—H3 119.6 N2—C18—C19 110.69 (10)
C4—C3—H3 119.6 C25—C18—C19 113.47 (10)
C3—C4—C5 118.50 (12) N2—C18—H18 106.3
C3—C4—C13 120.58 (11) C25—C18—H18 106.3
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C5—C4—C13 120.78 (11) C19—C18—H18 106.3
C6—C5—C4 120.46 (12) C24—C19—C20 118.18 (12)
C6—C5—H5 119.8 C24—C19—C18 121.55 (11)
C4—C5—H5 119.8 C20—C19—C18 120.15 (11)
C1—C6—C5 120.49 (12) C21—C20—C19 120.93 (12)
C1—C6—H6 119.8 C21—C20—H20 119.5
C5—C6—H6 119.8 C19—C20—H20 119.5
C12—C7—C8 120.49 (12) C20—C21—C22 120.34 (12)
C12—C7—H7 119.8 C20—C21—H21 119.8
C8—C7—H7 119.8 C22—C21—H21 119.8
C9—C8—C7 120.37 (12) C23—C22—C21 119.20 (12)
C9—C8—H8 119.8 C23—C22—H22 120.4
C7—C8—H8 119.8 C21—C22—H22 120.4
C10—C9—C8 119.57 (12) C22—C23—C24 120.56 (12)
C10—C9—H9 120.2 C22—C23—H23 119.7
C8—C9—H9 120.2 C24—C23—H23 119.7
C9—C10—C11 119.95 (13) C23—C24—C19 120.77 (12)
C9—C10—H10 120.0 C23—C24—H24 119.6
C11—C10—H10 120.0 C19—C24—H24 119.6
C10—C11—C12 120.89 (12) C30—C25—C26 118.96 (11)
C10—C11—H11 119.6 C30—C25—C18 122.54 (11)
C12—C11—H11 119.6 C26—C25—C18 118.42 (11)
C7r—C12—C11 118.69 (12) C27—C26—C25 120.62 (11)
C7—C12—C13 119.72 (11) C27—C26—H26 119.7
C11—C12—C13 121.52 (11) C25—C26—H26 119.7
N1—C13—C12 111.86 (10) C28—C27—C26 120.07 (12)
N1—C13—C4 111.86 (10) C28—C27—H27 120.0
C12—C13—C4 112.82 (10) C26—C27—H27 120.0
N1—C13—H13 106.6 C27—C28—C29 119.75 (12)
C12—C13—H13 106.6 C27—C28—H28 120.1
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C4—C13—H13 106.6 C29—C28—H28 120.1
O1—C14—N1 123.02 (11) C30—C29—C28 120.11 (12)
01—C14—C15 121.70 (11) C30—C29—H29 119.9
N1—C14—C15 115.25 (10) C28—C29—H29 119.9
C14—C15—C16 112.46 (10) C29—C30—C25 120.47 (12)
C14—C15—H15A 109.1 C29—C30—H30 119.8
C16—C15—H15A 109.1 C25—C30—H30 119.8
C14—C15—H15B 109.1 C14—N1—C13 122.10 (10)
C16—C15—H15B 109.1 C14—N1—H1N 117.6 (10)
H15A—C15—H15B 107.8 C13—N1—H1N 120.3 (10)
C17—C16—C15 112.49 (10) C17—N2—C18 121.74 (10)
C17—C16—H16A 109.1 C17—N2—H2N 117.4 (10)
C15—C16—H16A 109.1 C18—N2—H2N 119.7 (10)
C6—C1—C2—C3 0.3 (2) N2—C18—C19—C20 | -33.53 (15)
C1—C2—C3—C4 -0.29 (19) | C25—C18—C19—C20 | -162.00 (11)
C2—C3—C4—C5 0.23(18) | C24—C19—C20—C21 | 0.57 (18)
C2—C3—C4—C13 | 175.99 (1) | C18—C19—C20—C21 | -175.58 (11)
C3—C4—C5—C6 -0.17 (19) | C19—C20—C21—C22 | 0.38 (19)
C13—C4—C5—C6 | -175.92 (12) | C20—C21—C22—C23 | -0.84 (19)
C2—C1—C6—C5 02(2) | C21—C22—C23—C24 | 0.33(19)
C4—C5—C6—CH 0.2 (2) C22—C23—C24—C19 | 0.65 (18)
C12—C7—C8—C9 0.98 (19) | C20—C19—C24—C23 | -1.08 (18)
C7—C8—C9—C10 0.5 (2) C18—C19—C24—C23 | 175.01 (11)
C8—C9—C10—C11 0.8 (2) N2—C18—C25—C30 | -41.41 (16)
C9—C10—C11—C12 0.3(2) | C19—C18—C25—C30 | 85.78 (14)
C8—C7—C12—C11 2.06 (18) | N2—C18—C25—C26 | 141.81 (11)
C8—C7—C12—C13 | 174.85(11) | C19—C18—C25—C26 | -91.00 (13)
C10—C11—C12—C7 | 1.72(19) | C30—C25—C26—C27 | -1.55(19)

Continued.....
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Continued.....
C10—C11—C12—C13 | -175.13 (12) | C18—C25—C26—C27 | 175.35 (11)
C7—C12—C13—N1 128.17 (12) | C25—C26—C27—C28 1.6 (2)
C11—C12—C13—N1 -55.01 (15) | C26—C27—C28—C29 -0.6 (2)
C7—C12—C13—C4 -104.67 (13) | C27—C28—C29—C30 -0.5 (2)
C11—C12—C13—C4 72.15(14) | C28—C29—C30—C25 0.6 (2)
C3—C4—C13—N1 152.39 (11) | C26—C25—C30—C29 0.45 (19)
C5—C4—C13—N1 -31.95 (16) | C18—C25—C30—C29 | -176.32 (12)
C3—C4—C13—C12 25.24 (16) 01—C14—N1—C13 -4.69 (19)
C5—C4—C13—C12 -159.10 (11) | C15—C14—N1—C13 173.29 (11)
01—C14—C15—C16 -27.02 (17) C12—C13—N1—C14 | -119.05 (12)
N1—C14—C15—C16 154.97 (11) C4—C13—N1—C14 113.28 (12)
C14—C15—C16—C17 | -177.07 (10) 02—C17—N2—C18 6.93 (18)
C15—C16—C17—02 32.32 (16) C16—C17—N2—C18 | -170.97 (10)
C15—C16—C17—N2 | -149.74 (11) | C25—C18—N2—C17 | -121.69 (12)
N2—C18—C19—C24 150.44 (11) | C19—C18—N2—C17 109.67 (12)
C25—C18—C19—C24 | 21.98 (15)
Hydrogen-bond geometry (A, °)
D—H---A D—H H---A D---A D—H---A
C15—H15A:--02 0.99 2.63 3.4536 (15) 141
N1—H1N---O2 | 0.883 (16) 2.150 (16) 3.0189 (14) 167.4 (14)
N2—H2N---O1" | 0.898 (16) 1.997 (16) 2.8937 (14) 175.8 (14)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1.

Document origin: publCIF [Westrip, S. P. (2010). J. Apply. Cryst., 43, 920-925].
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S9 Computational Details

All calculations were carried out using the Amsterdam Density Functional (ADF)
2023.101 module of the Amsterdam Modeling Suite.>" All stationary points and
energies were calculated at the BLYP level of the generalized gradient approximation
(GGA) exchange functional developed by Becke (B*), and the GGA correlation
functional developed by Lee, Yang, and Parr (LYP®) (see Tables S4-S6 for Cartesian
coordinates). The DFT-D3(BJ) method developed by Grimme and co-workers,® which
contains the damping function proposed by Becke and Johnson,® is used to describe
non-local dispersion interactions. In addition, relativistic effects are accounted for
through the zeroth-order regular approximation (ZORA) method.'® This level of theory
is referred to as ZORA-BLYP-D3(BJ)/TZ2P and has been proven to accurately
describe weak interactions.’'? A large uncontracted relativistically-optimized TZ2P
basis set was used with no frozen-core approximation consisting of Slater type orbitals
(STOs) which is of triple- ¢ quality for all atoms and has been augmented with the
following sets of polarization functions: p and d functions on H, d and ffunctions on N,
C, O, F, S, Cl, and I."® The molecular density is fitted by the systematically improvable
ZIm fitting scheme and numerical integration is performed on a Becke grid.'*"® Both
are specified with the “VeryGood” option.

Conformational analyses of the receptor were performed using CREST' at a
temperature of 100°C. Conformers with an energy of +2.0 kcal mol~" relative to the
lowest one were neglected and duplicates were removed based on their RSMD
(<0.05). The conformers were optimized at the above DFT level in acetonitrile (using
the implicit solvation model COSMO'"~20 with Allinger’s atom radii?') for which the atom
radii of Cl and | were changed to match the experimental solvation energies of Cl~ and
I-22 as closely as possible, resulting in a radius 1.482 A for Cl (1.735 is default) and
2.010 for | A (1.967 is default), see earlier work? for the procedure.

To confirm that the stationary points are in their lowest energy conformation, frequency
analyses have been carried out with zero imaginary frequencies for equilibrium
geometries.?*26 Thermostatistical corrections were applied to calculate the enthalpy
H, entropy S, and Gibbs free energy for which the low frequency interpolation scheme

of Grimme and co-workers was considered, using their default parameters.?’
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S9.1. Bond Energy Analysis

The complexation energy, AE, of an anion-receptor complex is defined as shown in
Equation (1), where Ecompiex represents the energy of the interacting anion bonded to
the receptor, Eanion represents the energy of the anion, and Ereceptor the energy of the
receptor.

AE = Ecomplex - (Eanion + Ereceptor) (1)

The complexation energy between the anion receptor and anion in solution can be
partitioned as formulated in Equation (2), which is based on the activation strain model
(ASM)?8-31 for gas-phase calculations, and extended to the solvated phase®. In this

model, AE comprises four components, AEgesolv, AEstrain, AEint and AEdesolv:

AE = AEgesony + AEgirain + AEjnt + AEgq, (2)

The first term is the desolvation energy that stems from desolvating the anion and
receptor separately, which yields a positive term. The second term is the strain energy
(AEstrain) Which indicates how much energy is required to deform the equilibrium
geometry of the receptor to the geometry it acquires when it interacts in the complex.
The deformed receptor and anion interact and form a complex (in the geometry it
adopts in acetonitrile), resulting in the interaction energy AEin. Finally, the solvation
term AEsqv accounts for solvating the complex in acetonitrile. Note that during all these
steps, equilibrium geometries have been used for the receptor and complex that are

obtained in acetonitrile. The above energy terms are calculated by Equations (3—6):

AEdesoIv = (Ereceptor, gas + Eanion, gas) - (Ereceptor, ACN Eanion, ACN) (3)
AEstrain = (Edeformed_receptor, gas + Eanion, gas) - (Ereceptor, gas + Eanion, gas) (4)
AEint = Ecomplex, gas — (Edeformed_receptor, gas + Eanion, gas) (5)
AEsoIv = Ecomplex, ACN — Ecomplex, gas (6)

In the framework of the Kohn-Sham molecular orbital model using quantitative
canonical energy decomposition analysis (EDA),333* the latter term, AEi, can be
further decomposed into electrostatic interactions (AVeistat), Pauli repulsion (AEpauii),
orbital interactions (AE.), and an additional term that accounts for dispersion

interactions AEqisp, as shown in Equation (7).

S54



AEint = AVelstat + AEPauIi + AEoi + AEdisp (7)

The term AVestat represents the quasi-classical Coulomb interaction between the
unperturbed charge distributions of the deformed fragments. AEpaui comprises
destabilizing interactions between occupied orbitals on each fragment and is
responsible for steric repulsion. The orbital interaction energy (AE.) accounts for
donor-acceptor interactions and polarization effects, including interactions between
the highest occupied and lowest unoccupied MOs (HOMO-LUMO). Finally, AEdisp
accounts for dispersion corrections as introduced by Grimme et al.®

For a closer connection to experimental results, the coordination strength can also be

expressed in enthalpy, entropy, and Gibbs free energy:

AH = Ecomplex - (Hanion + Hreceptor) (8)
AS = Scomplex - (Sanion + Sreceptor) (9)
AG = Gcomplex - (Ganion + Greceptor) (10)

where Hcomplex, Scomplex aNd Geomplex, are the enthalpies, entropies and Gibbs free
energies of the interacting complex, respectively, and Hanionrreceptor, Sanion/receptor and

Ganionireceptor those of the anion and receptor.
S9.2. Voronoi deformation density charge analysis

The Voronoi deformation density (VDD) method was considered for computing atomic
charges and analyzing the electron density distribution.®> The VDD atomic charge on
atom A in a molecule (QaYPP) is computed as the (numerical) integral of the
deformation density in the volume of the Voronoi cell of A [Equation (11)]. The Voronoi
cell of A is defined as the compartment of space bounded by the bond midplanes on

and perpendicular to all bond axes between nucleus A and its neighbouring nuclei.
QXDD = - fVoronoi cell ofA[p(r) - ppromolecule (r)]dr (1 1 )

Here, the deformation density is the difference between p(r), i.e., the electron density
of the overall molecule or complex, and pyromotecute(™) = Xypy (), ie., the
superposition of spherical average-of-configuration atomic densities py(r) of each
atom Y in the fictitious promolecule without chemical interactions, in which all atoms
are considered neutral. The terms  p,,omoiecue () @nd py(r) on itself do not have a

clear and distinct meaning. Instead, the deformation density, that is the difference
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P(1) = Ppromotecute(r), Measures the charge flow to or from a nucleus A. The
interpretation of the VDD charge QaVPP is now straightforward and transparent: instead
of measuring the amount of charge associated with A, QaVPP directly monitors how
much charge flows out of (QaYPP > 0) or into (Qa'PP < 0) the Voronoi cell of A due to

interactions with neighboring nuclei and electrons.

S10 Figures and Tables from Computational Study

Conformers
3 1 1] v
ACN: AE/AG 0.0/0.0 +0.3/+0.4 +0.7 / +0.9 +0.9/+1.0
8 I 1] v
ACN: AE/AG 0.0/0.0 +2.0/+2.7 +2.6/+1.8 +2.6/+2.0

Figure S39. Conformers of receptors 3 and 8 ordered by relative energies AE with
(Gibbs free) energies (in kcal mol), optimized at COSMO(ACN)-ZORA-BLYP-
D3(BJ)/TZ2P.

3+CI 8+ ClI- 8+1I-
[3+CH [3+CH' [8+CH [8+CI 8+H (841
C . (™
(g O Or O 0808 1y
—< © L% © « ° ¥
ACN: AE/ AG -14.0/-5.7 -11.9/-3.8 -14.2/-7.0 -13.0/-54 -79/-0.6 -8.3/-0.9

Figure S40. Overview of all relevant receptor — anion complexes with (Gibbs free)
energies (in kcal mol™"), optimized at COSMO(ACN)-ZORA-BLYP-D3(BJ)/TZ2P.
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Table S5. Molecular orbital (MO) interaction analysis for the interaction between
receptor 8 and anions CI-and I-. The distances (in A) between the interacting N(H)
groups and anion are tabulated in addition to the orbital overlap S (i.e., (np anion |
o*NH receptor) in arbitrary units), energy gap (eV), and stabilization S? / A (eV-') — a
measure for the strength of the orbital interaction as illustrated by Albright.3® Computed
at COSMO(ACN)-ZORA-BLYP-D3(BJ)/TZ2P.

System Schematic MOs DFT MOs S As  S?/Ae* 102
I@
[8 + CI] . _Nﬁ HXN,Rz 0.163 1.60 1.66
A
@
[8 +1] R1—N€]/\/1\\ hN,R2 0.135 1.94 0.94

S11 Cartesian Coordinates

Table S6. Cartesian coordinates (in A ), absolute energies, enthalpies, and Gibbs free
energies (in kcal mol™") for the anions CI- and X-, computed at COSMO(ACN)-ZORA-
BLYP-D3(BJ)/TZ2P.

CI- (ACN)

E = -148.30 kcal mol™

H =-146.82 kcal mol™

G =-157.73 kcal mol™
Nimag =0

Cl 0.00000000 0.00000000 0.00000000

I- (ACN)
E =-130.87 kcal mol™
H =-129.39 kcal mol™
G =-141.44 kcal mol™
Nimag = 0

I 0.00000000 0.00000000 0.00000000

S57



Table S7. Cartesian coordinates (in A), absolute energies, enthalpies, and Gibbs free

energies (in kcal

COSMO(ACN)-ZORA-BLYP-D3(BJ)/TZ2P.

3-1 (ACN)

E =-8223.71 kcal mol™
H =-7940.21 kcal mol™
G =-7999.21 kcal mol™

Nimag =0

ToOQOED DD OZOoOzQaDoDnoDnODomDOOZ2 oD QOO @-DIE O

9.21332578
6.96989226
10.24898626
3.14607528
.47209411
.39783922
.92989181
.47922200
.13761912
.03631410
.55400358
.01096703
.55051695
.43961416
.51397511
. 73598397
.28719162
.37007918
.62167681
.97536298
.19593326
.48686631
.50345403
.69194771
.56405235
.11646658
. 79805260
.06478245
. 79974173
.15062320
.43136968
.03879475
. 79078751
.45253205
.975799%61
.04017666
.79387214
.94283798
.20403952

o I bdhhoWOUITDdAOCOUODD OO I I JOJOOOTWOUuooy JdJ 0y J W oo Ul

11.26031846
9.96078216
11.10662983
6.75987493
12.30848329
9.58367490
12.97116335
8.07718733
12.49571370
8.29125725
13.30377919
10.18772450
11.64115250
5.96106165
11.78960672
1.70800066
10.58979550
5.24569996
10.40242531
10.45750680
.57865174
.98559069
.48539975
.42678502
.48008343
.30404862
.35145695
.36026825
.41805242
.51249533
.55236234
.84706231
.09920206
.10272713
.21358636
.48394647
.49934044
.92973186
.98367679

O

<O J D00 PO OUT I I IR OoOYIO O,
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mol-') for the conformers of receptors 3 and 8, computed at

6.22030709
14.33681095
5.92553439
8.58465672
5.66020823
13.60634157
4.92935567
8.69660116
6.04014060
12.99983924
5.60477560
9.93933872
6.97987426
12.37780178
7.27664408
8.89682260
7.54393974
13.20722422
7.15335887
10.09880180
7.57117656
12.05813032
7.96447690
7.80485621
11.23259626
12.84008976
10.44898433
10.61920654
10.65035943
13.06783525
7.29431608
.38766125
.60561606
.25426665
.40616103
.08182265
9.28768769
10.87921791
10.16867358
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C 4.87140328 2.15563981 9.51958671
C 8.05964195 6.14219533 9.06410656

0 8.25158913 8.12749969 12.77952206
H 8.68929444 5.59605871 9.76277707

C 4.80858742 3.62124203 9.86574106

C 6.64594067 9.69529565 8.60247173

H 6.23637900 5.69303986 6.22505295

H 5.55882515 9.80370132 8.54117218

C 5.55941328 4.11207280 10.93701770
C 6.14122541 10.25102843 10.98080348
F 3.14952870 6.45382391 7.24549290

C 6.74234771 10.70293875 12.31091646
H 6.14745347 3.42926723 11.54386838
H 6.26896909 11.64871540 12.59772266
F 5.91729666 1.87976199 8.65763760

H 7.81837619 10.87626352 12.21602889
F 1.82515431 6.65706270 8.99079548

C 6.47234819 9.64850675 13.41253822
C 6.68560646 6.19745924 7.07720376

H 3.19153672 0.82418312 1.40561384

C ~1.92515272 1.07682799 3.91306099

C 0.41865224 -1.66080138 ~1.46945840

H ~1.64090903 0.03217785 4.00794562

H ~0.95323973 ~1.20030173 ~3.07300267

C ~1.51839684 1.81356945 2.79402444

C ~0.03145530 ~0.93300992 -2.57311335

C ~1.88231042 3.16434065 2.69538602

0 1.69407278 1.26657317 3.02176733

H ~1.56792140 3.74428535 1.82953051

C 0.28184452 0.98039988 ~4.18749997

C ~2.64379086 3.77029383 3.69908354

0 4.30981117 ~2.12554980 1.04233936

H ~2.91489295 4.82015952 3.61251507

C 0.72720992 0.15530065 ~3.00658425

C ~0.73533326 1.17535178 1.64070014

H ~2.99666240 1.09788405 5.78462379

H ~0.02091549 1.91923862 1.27409077

C 1.91076268 0.51609589 ~2.34957360

C 1.21151671 0.14623960 2.76107328

F ~1.57192701 ~2.99968476 ~1.54119156

C 1.89903006 ~1.14491282 3.20520925

H 2.48413679 1.37184571 ~2.69635077

H 1.49388358 ~2.01066988 2.66925164

F -0.87001783 0.52253426 ~4.76068304

H 1.65609318 ~1.28409592 4.26637938

F 0.34184671 ~4.03879880 ~1.22950551

C 3.43958818 -1.07570086 3.05546330

C -2.68881371 1.68087810 4.91935808
3-11 (ACN)

E =-8223.42 kcal mol™
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H =-7939.81 kcal mol™
G =-7998.80 kcal mol™

Nimag =0

TOQO@DnoOQOOI- oD mOZOaDonDn DO OoOmETOoOZ2onoomD DO E-D DO

~N o b 000 wWwoourJdJuoy oo UTJWOHOOHOOWOWJdIJJdIJJOoOoOuwwodkoywdIdbdoydoyOUroy JdJJdJo0

.48286324
.99349286
.26156633
.86153735
.13303490
.25975097
.86224356
.38851937
.13745628
.55120266
.08814175
.95493571
.49042030
. 70171993
. 71559636
.61172376
.83626815
.14000127
.83059877
.96007078
.88033597
. 15221259
.29190939
.79880001
.17994672
.59278317
. 73934919
.12717479
.56860748
. 76436193
.71010049
.25427726
.99259371
.82501099
.97394443
.19696643
.89743400
.14930408
.09801372
.43567662
.55586122
.59318408
.26533140
.63156479
.21116212
.13781957

12.51952020
9.10464973
13.16199265
3.04989284
12.82089749
8.93060250
13.69818957
1.78731612
11.98872566
7.58935439
12.21586790
9.68922104
10.86034358
5.30363834
10.21507964
7.11410267
10.55326880
4.61457040
11.39083746
9.80058991
11.15654534
5.00184522
.25509225
.47994204
.19640502
.63752846
.24848034
.66761275
.63497470
.86676361
.08954486
.10111836
.73766025
77297600
.26002277
.88486785
.40568778
.70318442
.49302146
.60986453
.41602605
.39013356
. 76063643
.82498360
.32042047
.97198819

[ )N IN G BNG 2 IR o) Wie) IEN BN IS RN e o TS NINe o INTNINe o B o ) BN VS IR BNTANING ) BN @2 BN G2 )Y
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6.96056314
14.46311121
6.55551681
8.09850200
6.72936659
14.13958531
6.14627524
8.40687944
7.25143403
13.02098337
7.07674660
10.26633976
8.00341555
12.58701330
8.41123229
7.65748433
8.23558442
13.22700948
7.70679263
10.19662090
7.87247546
12.61097233
6.77371581
6.20445857
11.15783407
13.17026013
10.29786610
9.73218149
10.63937028
13.70614855
6.88413054
.99318492
.38937557
.52240527
.25250705
.53420847
.87409980
11.66737910
9.93792126
8.92238771
8.13668299
12.36955725
8.63557129
.40191750
.05385128
.09300212

o 0O O -1 oy ®©
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H 5.28009869 8.87998185 9.424650611
C 5.12174842 5.99171849 10.69993521
C ©6.37443822 9.82932647 11.48512052
F 6.58837379 3.25126205 6.77455090
C 7.339417061 10.08423184 12.64133869
H 4.68902439 6.74693764 11.34755120
H 7.05790548 11.02531857 13.12593638
F 2.30335253 5.82054443 8.862440611
H 8.36750155 10.17961185 12.27997840
F 8.22679734 2.98075803 8.22131293
C 7.25032123 8.936330601 13.67539079
C 7.35925837 7.09234320 6.15116412
3111 (ACN)

E =-8223.03 kcal mol™

H =-7939.51 kcal mol™

G =-7998.34 kcal mol™

Nimag =0

C -3.49802980 -0.52814474 -0.39684354
H 3.80454272 -0.16453578 3.54052006
H -4.21834512 -1.33354101 -0.27633347
C -0.33971783 -2.86687699 -0.97822649
C -3.45971972 0.20851246 -1.58724808
H 3.89353388 -1.94000944 3.54438565
H -4.15039833 -0.02278860 -2.39457290
F -0.52472716 -2.83393713 0.39307561
C -2.52824211 1.24071340 -1.73328976
C 3.84890163 -1.10289360 1.58503694
H -2.48988438 1.81435574 -2.65525879
N 0.05314746 0.00880781 2.07283426
C -1.63197449 1.52882254 -0.69852192
C 3.67486243 0.14025794 -0.56254733
H -0.89738731 2.32097190 -0.82254488
F 1.23608720 1.01179062 -5.18050738
C -1.67019171 0.80106224 0.49701499
H 4.46164240 -0.54229488 -0.90071134
C -2.061635585 -0.22521732 0.64337765
H -0.27661422 -0.91935919 1.83169954
H -2.67644316 -0.78488102 1.57421493
H 3.97032820 1.15713436 -0.83181470
C -3.05184369 3.02828717 4.81539455
H -3.064272930 3.49803301 5.59830651
C 2.36256977 -0.22021993 -1.25026852
N 3.600659067 0.04469929 0.89586983
C 1.60432197 -1.31387803 -0.81660517
F 0.0568860064 2.296129067 -3.84001693
H 1.94574430 -1.90767706 0.02354599
H 3.19153672 0.82418312 1.40561384
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-1.92515272
0.41865224
-1.64090903
-0.95323973
-1.51839684
-0.03145530
-1.88231042
1.69407278
-1.56792140
0.28184452
-2.64379086
4.30981117
-2.91489295
.727720992
-0.73533326
-2.99666240
-0.02091549
1.91076268
1.21151671
-1.57192701
1.89903006
2.48413679
1.49388358
0.87001783
1.65609318
0.34184671
3.43958818
2.68881371

OO DEHID DO OO DD o000 o000 @m0
(@)

3-1V (ACN)

E =-8222.80 kcal mol™
H =-7939.27 kcal mol™
G =-7998.22 kcal mol™
Nimag =0

.50789558
.67637346
.30323864
.61528360
.70146484
.12516720
.42674584
.39971801
.95438932
.52337460
.87735239
.65907089
.01873269
.31584481

Qaoz@Dnaoaom@EmmaQQT T
I
HFONONO U Uy U O

RN OCORPRP PP OPMNWODWRFRFR WORRERORR

.07682799
.66080138
.03217785
.20030173
.81356945
.93300992
.16434065
.26657317
. 74428535
.98039988
. 77029383
.12554980
.82015952
.15530065
.17535178
.09788405
.91923862
.51609589
.14623960
.99968476
.14491282
.37184571
.01066988
.52253426
.28409592
.03879880
.07570086
.68087810

.65360266
.09098177
.01918170
.06575801
.00412812
.13336272
.64063807
.05177985
.53363896
.01754049
.80304465
. 78195378
. 71299192
.84774200
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.91306099
.46945840
.00794562
.07300267
.79402444
.57311335
.69538602
.02176733
.82953051
.18749997
.69908354
.04233936
.61251507
.00658425
.64070014
. 78462379
.27409077
.34957360
. 76107328
.54119156
.20520925
.69635077
.66925164
. 76068304
.26637938
.22950551
.05546330
.91935808

.45122843
.08640583
.45488091
.24012596
.80517046
.27802330
.30688566
.27369038
.48777199
.53338824
.99632693
42762159
.13120305
. 73145613



5.21753213
-0.41688249
3.82386565
-2.19580778
3.57460391
2.48163063
2.64187531
-0.54651322
-0.98237027
-1.92420230
-1.68670805
-0.79743984
-2.93286852
1.07780658
-3.62928674
-1.46611704
1.43256720
-3.28553719
2.36241961
-2.68540289
1.45752199
-2.40810727
.24424133
2.65797281
0.23703211
-0.24247657
-0.96689587
1.40524406
-1.89726898
-1.16780548
2.80653014
0.22254050
3.20986269
-0.80213451
2.56072311
-4.46096771
2.29305557
0.16562539
2.48207189
-0.44778917
2.98956955
-5.34854126
0.84570850
0.22331787
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8-1 (ACN)
E =-8070.02 kcal mol™
H =-7788.68 kcal mol™
G =-7848.89 kcal mol™
Nimag = 0

R PO ONO WO

.34693099
.62810107
.36120889
.29287052
.84126449
. 712231312
.59025362
. 70436677
.44304780
.93832840
.51209221
.81597762
.35054373
.63216933
.18256572
.38805596
.51286887
.87800194
.07207017
.92072084
.16317464
.96587154
.53212394
.22035067
.57348532
.98583177
.10106111
.34925299
.45419625
.80227709
.53511372
.19641796
.82838962
.56941338
.01280835
.40100294
.14186482
.45039561
.08459330
.93271215
.06534943
.08600620
.14876446
.14817457

S63

.13653216
.94436544
.49167361
.20396473
.80323029
.57685796
.30210677
.49269346
.02951385
.24986826
.10707945
. 75352960
.48674967
.67416354
.45043475
.24897643
.82011819
.92591469
.88287231
.54980601
.43406676
.98220827
.34381551
.21300239
.04105833
. 73028500
.64044113
.11180732
.55663178
.59777974
.18726015
.40575775
.16290491
.15288526
.98613439
.08926387
.01267552
.63036389
.50591689
. 76459889
.85458602
.80334185
.54897534
.11615045



QOmOoOaQa@Dn DO Q- o Cn D Enon"mOazZzoanonDnDnOon oMz oCzaoo"mIDITD Q@I

9.
7.
10.36601920
2.
. 77515398
.46193342
.32087586
.11555344
.47989194
.17095344
.01543230
.90881400
. 77938604
.67803997
. 77394864
.45960366
.36231101
.7192277468
.65749022
.88586486
.11304542
.66635417
.21637752
.36353326
.69480316
.30972068
. 77803915
.36769781
. 71864466
.32330596
.08220606
.94155984
.34833507
.36614055
.80981955
.01197058
. 74310313
.37022950
.30151980
.01821365
.94704395
.84767733
.66990116
.93409653
.58569719
.69370111
.51648126
76077737
.03051205
.82146838
.65057346
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36222731
01832424

90051413

11.23325541
10.01194713
10.97085487
6.36259236
12.42970384
9.51128201
13.09980491
7.70647713
12.75776860
8.38022568
13.68296924
10.19763237
11.89376227
6.06606777
12.15018877
1.53121783
10.69208856
5.40292152
10.36618412
10.39964012
9.43111864
.15128438
.58397015
.52873387
.45696428
.40291828
.21313236
.28394314
.29079659
.57879267
.67976734
.57923291
.25235440
. 71910032
.30473576
.19983921
.55648477
0.11174071
.01267666
.95927430
.20310979
.24929905
.63103081
.45450189
. 79379626
.85127895
.99648159
4.07385045
10.37599742
5.98009409
10.79090251
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S64

6.32024094
14.23707810
5.99403559
8.68870314
5.89192748
13.54413717
5.23169804
8.70461939
6.31174149
12.86202448
5.97832240
9.93531166
7.15904560
12.09405449
7.48691205
8.62115037
7.59038713
12.96157706
7.16270085
10.13307448
7.47785842
11.62938959
7.72548214
7.50988027
11.11647965
12.54845451
10.37486656
10.80750918
10.49555667
12.72376444
7.28580098
.45033831
. 72280562
.51160141
.30918284
.23738371
.03599135
10.78586940
9.84886995
9.79415873
8.74257612
12.70551541
9.31962032
.97259436
.55213909
.21541414
.43780572
10.91383186
10.93090781
7.37028941
12.25387421
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.47018045
.13061489
.31524863
.70917984
.63566066
.52246891
.27962303
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8-11 (ACN)

E =—-8068.06 kcal mol™
H =-7786.86 kcal mol™
G =—7846.24 kcal mol™
Nimag =0

-3.36745100
3.93551937
-4.14019973
-0.48234182
-3.18277486
3.92000631
-3.81262201
-0.64501433
-2.18391250
3.82763883
-2.03383569
0.14398053
-1.36840320
3.55510374
-0.58553821
1.22241067
-1.55735388
4.37457032
.56647235
-0.15225193
-2.73986059
3.77586609
-3.27029516
-3.92181863
2.25308610
3.52324134
1.45915471
0.28373656
1.75333520
3.18749024
1.94302321
0.30001591
-1.56416879
-0.99108179
-1.58114499
-0.09031759
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3.
11.67971564
1.
11.03880783
6.
9.
6.

48105483
50672532
16085085

67281671
32771505

.29306665
.14453265
.05471921
.82084835
.41842438
.92021846
.21122997
.69593521
.39329346
.09804917
.94767114
.17129562
.65245482
.17991306
.40445938
.39086063
. 95335520
.43634533
.01885861
. 756277823
.55268340
.22702912
. 76598798
.13896092
.23380333
.02033011
.25996610
.01876006
. 75942529
.81847186
.97569154
.67014597
.04128915
.38339284
.80294663
.06810057

S65

11.48479737

12.62340775
9.
12.12089033
9.

80799531

21559048

13.32358534

6.

99738503

.48065994
.43003054
.41423441
.87694702
.67245010
.46470781
.53410890
.49179123
. 75113539
.49610676
.67341488
.16199321
.64489508
.63581124
. 71113187
.46088094
.55403316
.02345725
.63033907
.86652302
.56195430
.85623226
.96093960
. 74773404
.31183324
.81727801
. 79113928
.31733576
.12306120
.36011425
.00012194
.45523798
.05600930
.16246106
.93087301
.65213499



-2.06820348
1.89925089
-1.78749546
0.31674650
-2.90779871
4.43977323
-3.27520590
0.69872574
-0.71303886
-3.05635023
-0.03039026
.85968113
1.27523980
-1.72495843
1.96392998
2.45810558
1.48973785
0.90941101
1.79729872
0.16603189
3.49631297
2.78438519
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811l (ACN)

E =-8067.42 kcal mol™
H =-7786.15 kcal mol™
G =-7846.91 kcal mol™
Nimag =0

7.05380588
0.11374554
7.65536411
5.33751177
7.65541358
0.33200762
8.72606771
6.29984582
6.86830085
0.17003698
7.32492197
2.83416772
5.48992942
0.91518877
4.88912763
5.55519370
4.87917010
0.14108088
5.67600570
2.88767437
5.22271339
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.11699465
. 77950753
. 76579154
.64868531
.59775364
.49757011
.62052692
.03687796
.30831731
.80343913
.11958747
.38144081
.28840223
.95809597
.02301665
.18909108
.85885581
.26865102
.18913652
.02358166
.04168511
.45513080

.44465331
.33608611
.31524925
.07861246
.18752766
.00424780
.07421900
.47667286
.92274374
.24663559
.90452770
. 77568196
.77847657
.10767081
.64852478
.83082521
.47846247
.35447835
.58926193
.69537368
57177252

S66
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.88465070
.35942811
.05705619
.45389502
.89297592
. 78118536
.84834017
.16605183
. 77106602
.83892584
.49881168
.50467349
.87035296
.41489096
.22644012
.91782648
.69656580
.92110001
.29764151
.06251658
.97818427
.01163937

.05506520
.51936610
.19640613
.27035586
.18374097
.21285919
.03027542
.03335718
.51027419
.03219245
.61363924
.07181556
. 70069476
.00564917
.94892615
.85669155
.56967283
.62627189
.24990028
.94171902
.15128733



-0.77961390
1.05574256
0.47915227
-2.27765837
-0.67653966
-3.16002561
-3.58755669
-2.89138196
-0.80962554
2.44721545
-4.38989805
2.95324656
-5.71137591
2.55567127
-4.75825512
1.90585643
1.98100845
1.98504355
.21636229
.16064416
.15651962
.66291958
.87153737
.38285059
.61783215
.25787998
.64047634
.23600608
.68764582
. 72192303
.95911659
.92765521
.82083846
.22826507
.00577210
.18616196
.69858229
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8-1V (ACN)

E = -8067.44 kcal mol™
H =-7786.16 kcal mol™
G =-7847.07 kcal mol™
Nimag = 0

7.04203833
-0.12375703
.64968852
-5.46727624
7.62599135
-0.22235564

NONNENWOWRLREOR

.24507446
.95177549
.86054206
.32363075
.54659489
.55738195
.34484810
.60161471
.03529151
.17310118
.09460642
.71084270
.59772950
.60892386
.24480840
.22609543
.15438216
.79247088
.58387773
.39555448
.57844184
.86692242
.12160175
.64959756
. 76129838
.95056018
.66880362
.86692334
.97766310
.83131867
.36030885
.85502020
.10714999
.65661091
.83277481
.68227793
.33548285

.27185344
.25747218
.11177860
.717201223
.01486397
.04481352

S67

.01927120
.21803185
.06275185
.52011052
.00558072
.14705463
.70035121
.26240695
.87599638
.66376958
.63157208
.50813529
.86976619
.61693742
.49500586
.69289505
.21160819
.68717985
. 73237012
.49680093
.54340289
.34080468
.86273659
.85013138
.86100378
.89658830
.38091898
.56760211
.07955712
.48736010
.10726653
.16598708
.47426152
.44320096
.32391839
.69718324
.86396973

.14031666
.54128473
.46946985
. 76258145
.05371770
.22025308
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.68888522
.60155175
.83131287
.20298211
.27421270
.83119066
.46281975
.97339940
.85565363
.69431983
.86976663
.15892597
.67399009
. 79602685
.23446159
.99210290
.98381648
.39020418
.28562220
.66305531
.31702250
.48754591
.18356076
.70805297
.36927927
.51809609
.85501848
.63613268
.52959559
.70581854
.90576208
.21939468
.02478130
.87894449
13777752
.00611745
.66086491
.66831681
.38640047
.47895692
.30297072
.46735230
.32637324
.85794584
. 76834683
.66554826
.02755745
. 71218661
.19786477
.58933189

NOMNNENWOWREPOR

.12912029
.24573901
.05575070
.20670557
.03707546
.69756927
.87228091
.16682630
. 71187363
.08913993
.38478660
.38973523
.45591017
.54228454
.43800445
.09086410
.98548032
.89195680
.23953730
.59139014
.67182482
.62285443
. 71684847
.13100897
.27193333
.24125341
.85952812
.42582775
.65060968
.09740219
.20524441
.27015728
. 72708676
.45880875
.37028962
.42525192
. 79323206
.00547593
.60097871
.90173692
-0.
.58341870
.85108973
.69965411
.75944012
.29498765
. 79480001
17272036
.50130155
.31185219

95432666

S68

.12582727
.49133364
.47969763
.91501896
.63437725
.01165433
. 70396874
.27141997
.02981060
. 724677370
.50791315
.19823533
.08818917
.99403699
.06228594
.33423301
.44130401
.34983657
.37886331
.18515162
.61110007
.86476741
.35197510
.04512475
.56937890
.18674154
.45073245
.98698205
.67906175
.53664774
.80361418
.10096076
. 717320646
.64493084
.68780251
.39099173
.56857613
.30002299
.82600465
.66197660
.86009072
. 72659728
.46885472
.43386946
.61285695
.55715901
.38029785
.68057004
.58730031
.63166327
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Table S8. Cartesian coordinates (in A), absolute energies, enthalpies, and Gibbs free

energies (in kcal mol~) for the complexes of receptors 3 and 8 with anions Cl-and I,

0.
1.

21801984
59832351

-3.
2.

64807009
43083027

-0.
-0.

70126828
68940521

computed at COSMO(ACN)-ZORA-BLYP-D3(BJ)/TZ2P.

[3+CI"] (ACN)

E = -8385.88 kcal mol™
H =-8101.23 kcal mol™
G =—-8162.97 kcal mol™

Nimag =0
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.36260585
.01817019
.39190476
.94918245
.30529790
.45927483
.51206981
. 74661787
.98434854
.53701470
.15877432
. 78642040
. 72138398
.66176437
.30567995
.48927012
.77355344
.05164620
.09680550
.75331868
.92069866
.69739465
.45101525
.93561783
.16476824
.60565781
. 76690995
.19754062
.60705453
.42707571
.87469463
.30915232
.13997992
.11247057
.18590544
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.48354068
.17850847
. 78608287
. 70670745
.27587958
.24221955
.19441201
. 71811376
.87780200
.38332753
.48577150
.83722774
.69392493
.66819357
.38682589
.03702470
.89850848
.16582588
.30071892
. 77258962
.68280267
.99626443
17265793
.61812614
.06854385
.22918375
.13421066
.38654258
.65173328
.30780516
.06559633
.52512812
.65265572
.17094718
.40907911

S69

.78920281
. 73017169
.96950291
.13840478
.25930788
.22876976
.80393451
.49080919
.02738660
.33057373
.39112529
.63810243
.32540332
.13459403
.14031442
.46535084
.85473853
.37280687
.09466620
.31209342
. 74298227
.00838555
.92072504
.40276014
.51907098
.89476045
.19053248
.12653314
. 73596314
.19296748
.99041230
.45543601
.53666265
.03967929
.66276350



.23907437
.13130607
.36155846
.39028444
.55445070
. 76318829
.45358641
.49343100
.37254584
.48059046
.23411001
.40112736
.08925261
.84594070
.30411101
.36124835
.38899813
.21676524
.20430284
.43540569
.44161786
.58223641
.49512650
.55401373
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1

[3+CI]' (ACN)

E = -8383.84 kcal mol™
H =-8099.04 kcal mol™
G =-8161.12 kcal mol™
Nimag = 0

-7.04682093
0.10224692
-7.44711149
-4.05575515
-7.44607715
0.08491470
-8.15955319
-4.29139616
-6.91150356
.04813957
-7.20177637
-3.81443629
-5.99069625
0.03485299
-5.57629300
-2.88355859
-5.59075715
0.66231885
-6.12424433
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.86799051
.35659910
.36561857
.12521950
.12688705
.43803684
.25153201
.02392781
.81042338
.62180134
.277322082
.44931608
.40378016
.26519831
. 76554154
.62754601
.57146779
.70882941
.27488510
.43739089
.903514064
.90969971
.01720651
.98594046

.43339562
.50101724
.57752921
.71010080
.34464108
.24130401
.04841373
.93927935
.63861777
.21009962
.35169798
.53078184
.012299%61
.11783183
.01800490
.10128708
.10407727
.24889344
.80857385

S70

.05998930
.97334261
.04834097
.94507363
.01929321
.60221958
.09174257
.04923806
.37697637
.06038437
.63820348
.09850998
.12443252
. 75611182
.93384822
.36215450
.62249713
.24327371
.17383820
.28487459
.66132561
.24080874
.61364665
.83417143

.94655990
.92152542
.94674513
.85620900
.92934510
.26720824
.69492466
.52204356
.92640390
.18448995
.69398046
.70747078
.94462215
.13458852
.95069729
.07218810
.95234002
.34939656
.96321253
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.26366008
.82512423
.51990201
.90866778
.48043624
.34204415
.03889664
.06991970
.84121961
.63671379
.46434417
.21473764
.33598175
.24455735
.88943767
.42981098
.90473498
.38952040
.94200525
. 77695762
. 72189945
.12670427
.37698244
.08470909
17724591
.64621096
.55046700
.94809927
.90605898
.54027907
.25999772
.86497281
.34870195
.33118120
.94779402
.07887837
.30766401
.33201141
.94772979
.19788399

[8+CI"] (ACN)

E =-8233.37 kcal mol™
H =-7950.84 kcal mol™
G =-8013.50 kcal mol™

Nimag =0

C 3
H 0
H 4

42746947
.32193682
.51164144
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4.
1.
4.

.66481312
.08212154
.00629672
. 712344219
.25652682
. 93862350
.26007970
.237277337
.05374832
.02200544
.11095194
.63555932
.40552003
.54789993
.46305282
.34151721
.59341944
. 74031139
.83691642
.29282882
.85301976
.43090466
.93931306
.51728131
. 76224025
.60087742
. 76682242
.31287202
.93796464
. 75576354
.718733476
.58842774
.85132563
.35696325
.56501590
. 71532792
. 78591438
.54003903
.32312186
.10641047

13421785
79056347
21239201

S71

-6.
0.
-6.

.03840170
.21289783
.54776444
.18278852
.93910830
. 75483652
.67628001
.52622786
.33771655
.91253014
.30421544
.15536577
.09316837
.12473729
.31860831
.22977711
.88892838
.29248530
.88322295
.58263770
.00272361
.26314516
.17198442
.30264764
.11566499
.13977408
.84197038
.30756039
.55180042
.09362437
.49480180
.82048106
. 74293813
.52491022
.52682725
.89028244
.29638176
.62715510
.12707107
.09009187

25879289
88920488
29962547
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. 76237498
.62926741
.17403597
.09221012
.08583790
.23540232
.05419984
.60947202
97738177
.64171873
.53971625
.44179346
.95977630
.43571610
.20028557
.83378227
.94377280
.45941441
.63248656
.08194781
.40092982
.97298181
.16617021
.56296524
.97546335
.42421918
.88886725
.65393896
.06031065
.13820026
.42921841
.23973809
.04152125
.24990341
.60090373
. 71730985
.87267276
.66764364
.13270754
.44400833
.62985842
.77210817
.59484588
.30807477
.12506522
.03941162
.01866828
.55398240
.58449860
.31713860
.01809204

R W NDNDNWERE WRE OO 0oy = 01

.45123548
.14683821
. 74098136
.01193810
.06888832
.03902868
.02318592
.82015544
.81903763
.92463452
. 79315521
.84341524
.33361398
.90810095
.37363931
.01945258
. 73093163
.23479780
.82747855
.99036988
.91362807
.42157227
.39729408
.59463979
.63446628
.01342882
.27590371
.03462661
.22374747
.56313180
.18442685
.38370605
.69852191
.40012339
.38449240
.10504560
.99409270
.57975850
.02643188
.18454285
.52861793
. 70977965
.52959670
.78815471
.88517621
.17981328
.15362324
.42223114
.96638396
.46088880
.49921061

S72

.48462834
.80901280
.03805474
.277825107
.49973258
. 75363248
.25987670
.17944784
.46010449
.14748925
.07578002
.09837984
.14493260
.59930081
.20966473
.66070589
.11087578
.24122163
.11087491
. 76091727
.23860204
.34191531
.86985475
.82151755
.7142772889
.30711349
.16152035
. 71070217
.96514985
.15720179
.52789731
.50556005
.64114317
.93406270
.93860312
.99906458
.82113504
.56046144
.33778050
.09896140
.15600477
.91727096
.26115111
.06155062
.02142989
.57595991
.97649719
.16172435
.67654938
.90548290
. 22265572



1.64441130
1.95802866
.10493351
1.06913981
.83672703

[8+CI"]' (ACN)

E =-8232.13 kcal mol™
H =-7949.56 kcal mol™
G =-8011.94 kcal mol™
Nimag =0

-5.64319505
0.30649531
-5.29222354
-4.24659592
-6.82049503
-0.10382515
-7.39328015
-4.36468834
-7.24896904
-0.76063623
-8.15882095
-3.65381098
-6.51340516
-0.41416270
-6.86020734
-3.21244812
-5.33294938
-0.28740406
.89986893
-4.09839705
-3.97984559
0.42674754
-6.90997018
-7.51507375
-1.71064875
-0.32189003
-2.40884519
-3.32485726
-2.06571831
0.10104321
-6.20114493
-3.54717034
-6.25220957
-4.88453046
-5.34723651
-4.00165060
-5.27896006
-1.58010632
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.33051922
.39457662
.52800446
.21272540
.12646405

.61596002
27779613
.63431541
.12417809
.18329548
.25436546
.86260387
.31779318
.13574938
.13067702
.48808217
.81786822
.00614845
.15352777
.02513715
.25877514
.57613833
.93143014
.25822840
.02607479
.09604350
.62061160
.53288986
.27989157
.53612194
.57096164
.42688572
.40246750
.45721587
.47612886
.22651482
.07083322
.18324461
.52029184
.60117176
.24682715
.94592332
.49737871

S73

.13636444
.50226468
.08859918
.33522043
.99580938

.63754176
.66721929
. 78347178
.00513525
.25549871
.46298655
.88211410
.33629235
.06926975
.43443655
.55029937
.14432064
.25933432
.01999467
.11320930
.67973735
.63456235
.05606093
.84040613
.64787813
.38588342
.54319034
.24487632
.75390448
. 71981693
.62032683
.45071689
.48706467
.44431460
.42900120
.98167188
.18403205
.28793552
.716317267
.93257563
.19800881
.54917803
.85421264



-4.61212797
-3.73718165
-6.06007967
-1.59878095
-6.00008286
-3.30439816
-4.50765061
-7.63377949
-3.81621256
-2.17024708
.40492001
-5.50403919
-1.73088205
-1.64923838
-2.44105312
-5.09568680
-1.41831840
-3.54811352
-0.47171176
-6.97618776
.17884732

OO o"mEDH-HD D OO0 D OO0 n00@
|
N

[8+1] (ACN)

E =-8209.64 kcal mol™
H =-7927.58 kcal mol™
G =-7990.85 kcal mol™
Nimag = 0

17734282
.50404206
.24449425
.67006093
.25703709
.04212961
.60835452
.42175685
.88552771
.02665382
.16608526
.08059758
.43501106
.33374008
.63039476
.66737927
.35150124
.85344924
. 72613708
.05621120
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.23878093
.64917632
.91001415
.58733255
.95194475
.20731705
.55648123
.88977600
.09322295
.85986696
.14479325
. 75646783
.16393011
.61667345
.38175359
. 79158440
.69686347
.40839564
.51576458
.18807772
.36218247

.18439178
.89831862
.35333922
.20882798
.14259873
.91124918
.05641824
.34348850
.91735376
.08718744
.65528909
.66753741
. 74016079
.87553000
.56629323
.69728936
.77846241
.42093706
.00709635
.68647800

S74

.25774457
.55344203
.19954883
.30188743
.89270108
.45837275
.20262334
.44971214
.45550852
. 71836790
.46649526
.39282237
.41279134
.13953773
.69996546
.64422834
.31721812
.16482059
.77929116
.63589698
.93541640

.41280850
.88955626
.53843699
.66987849
.86022204
.04478275
.33396704
.00849971
.69854562
.12913726
.04652318
.48989528
.08792859
.93206982
.95632364
.54109358
.64170846
.11162591
.81020533
.17135932
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[8+I"]' (ACN)

NP O RFRPEPEPNOOOWODOORROOWRENNMNDNNEDNORODOOREPENRERERPREPRODNDDNDDNDW

.44336799
.41430875
.55958790
.98050059
.81089387
.09350297
.44588445
13972252
.32304407
.86866165
.09443153
.97248175
.38034426
.51941956
.45942342
.15214011
.37393672
.51913518
.67704813
.02265341
.92555424
.23845837
.63602987
. 79165679
.85190038
.33284130
.23452174
.30806017
.13748329
.03384442
.67312848
.80823240
.48289489
.94086133
. 76125251
.27532455
.00142966
.63408939
.31808001

E =-8209.98 kcal mol™

H
G

—7927.60 kcal mol™
—7991.06 kcal mol™
Nimag =0

-5.65033856

0.

31371362

-5.30270736
-4.25389083

-0.
.30463957
-1.
.11977611

.26097600
.03426854
.01862439
.89761865
.39955142
.44910702
.49618645
. 70629996
.92950885
.15626755
.08967162
.02063020
.53317584
.88830845
.24836386
.47626117
.56330025
.01540221
.32905863
.79850004
.68691047
.82851088
.30578895
.38966605
.51423808
.46814089
.46242669
.83991557
.98759147
.14889671
.35739597
.98241777
.42794940
37717797
.23152768
.39554180
.60708007
.21548215
.91139707

61337804

63308833

S75

.47450002
.87303046
. 79047725
.27246157
.26194814
. 73051568
.85249840
.51248847
.38017220
.02793888
.84764152
.05890679
.38242780
.61349912
.53331681
.68155272
.85634289
.91450525
.84126317
. 72611634
.48467920
.52061892
.94282199
.08114390
.94033844
.48510310
.05078883
.88898706
.59091849
.52078095
.21333106
.45296163
.06981308
. 79827376
.18800274
.08030030
.04299559
.47085788
. 76897785

.63256596
.65679491
.717632321
.99529368
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.82958446
.08663705
.40723324
.36891140
.25443273
. 75672933
.16585704
.64334114
.51322772
.41273261
.85722303
.19683911
.33081860
.28615224
.90111811
.07250919
.97937339
.42637048
.89123142
.49170348
. 71159141
.31602761
.41222818
.34868722
.06869162
.12050917
.22601586
.55297830
.30913838
.89352895
.34051948
.00823310
.23561761
.58727589
.54495227
. 74158724
.01062613
.60571534
.92237346
.30899161
.50388241
.67697118
.81413289
.17129461
.39830945
.51268260
. 71908900
.64750711
.42351974
.09812730
.40647617

P WONRPFEPFONREFEFWWNNORFRRUDWUOULMDWDNdRPRP WEDNOWRERR,DMMNODOOOHOUITOO R OOR P WODNRE

.18007069
.23040225
.85992651
.31160444
.14053355
.10659779
.49357505
.82585100
.01110459
.16994655
.03110958
.27338595
.57981410
.91519450
.26115754
.01907938
.09561179
.63576103
.53901540
.28647060
.54999295
.59121784
.41609589
.40958959
.44625645
.49016982
.22541982
.06330935
17637132
.52499032
.60626921
.25413245
.95793664
.52561700
.25547521
.65926887
.92262552
.55665874
.96999403
.21757647
.56155204
.88296932
.09797885
.87355743
.16270103
. 75439173
.18171374
.63303767
.39402908
.80094174
.71297299

S76

.24546532
.45255589
.86704201
.32291251
.06080444
.42801063
.53830640
.13606588
.25660596
.02717959
.11086909
.67510865
.63633115
.06081955
.84171865
.61586400
.39285569
.55426923
.25491752
. 76870655
. 72389167
.62890912
.44853888
.48471727
.43922300
.44047830
.95005819
.17937627
.22892076
. 75908662
.93005768
.19656164
.58097505
.87094843
.20364052
.56098919
.23777629
.30080400
.95749658
.46289167
.19654319
.40230437
.46334587
. 72634544
.47037871
.38054322
.41194563
.15344391
.69992654
.67529210
.31710727



F -3.55824837 -1.40654447 -6.15614545
C -0.46074951 0.53918049 1.77162362
C -6.99477416 4.18691919 2.61120085
I -5.39654781 -0.67454226 3.09555261

Table S9. Gas phase absolute energies, enthalpies, and Gibbs free energies (in kcal
mol-") for the receptors 3 and 8, anions CI-and |-, and complexes of the stationary
points given in Table S4 - S6, computed at COSMO(ACN)-ZORA-BLYP-D3(BJ)/TZ2P.

System E (kcal mol") H (kcal mol") G (kcal mol)

Crr -83.82 -82.34 -93.25

I- —74.97 —73.49 —85.54
3 -821098 -7926.81 —798520
3-ll -8210.11 —7925.90 —7984.22

3-11 -8210.10 —7925.97 —7984.13

3-IvV -8207.76 —7923.61 —7982.03

8-l -8060.12 —7778.18 —7837.50

8-l —-8058.61 —7776.84 —7835.77

8-l -8056.87 —7774.99 —7835.32

8-IvV -8057.03 —7775.15 —7835.56
‘[3+CF]  -8337.92 -8052.95 -8114.58
[3+CIT —-8330.65 —8045.54 -8107.06

[3+17] -8319.59 —-8035.25 -8096.28

[8+CI7] -8191.35 —7908.79 —7969.74

[8+CIT -8178.43 —7895.79 —7957.95

[8+I7] -8169.92 —7887.52 —7950.70
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S12 NMR spectra of synthesized compounds
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Figure S41. "H NMR spectrum (400 MHz, T = 298 K) of 12 in dimethyl sulfoxide-de.
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Figure S42. 3C NMR spectrum (125 MHz, T = 298 K) of 12 in dimethyl sulfoxide-ds.
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Figure S43. '"H NMR spectrum (400 MHz, T = 298 K) of 14 in methanol-ds.
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Figure S45. '"H NMR spectrum (400 MHz, T = 298 K) of 1 in dimethyl sulfoxide-ds.
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Figure S46. '3C NMR spectrum (125 MHz, T = 298 K) of 1 in dimethyl sulfoxide-ds.
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Figure S48. 3C NMR spectrum (125 MHz, T = 298 K) of 2 in methanol-da.
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Figure S49. '"H NMR spectrum (500 MHz, T = 298 K) of 3 in methanol-d..
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Figure S50. 3C NMR spectrum (125 MHz, T = 298 K) of 3 in methanol-da.
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Figure S51. "H NMR spectrum (500 MHz, T = 298 K) of 4 in methanol-d..
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Figure S$52. 3C NMR spectrum (125 MHz, T = 298 K) of 4 in methanol-da.
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Figure S54. '"H NMR spectrum (125 MHz, T = 298 K) of 5 in methanol-d..
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Figure S$55. '"H NMR spectrum (400 MHz, T = 298 K) of 6 in dimethyl sulfoxide-ds.
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Figure $56. '3C NMR spectrum (125 MHz, T = 298 K) of 6 in dimethyl sulfoxide-db.
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Figure S58. '3C NMR spectrum (125 MHz, T = 298 K) of 7 in chloroform-d.
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Figure S60. '3C NMR spectrum (125 MHz, T = 298 K) of 8 in chloroform-d.
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Figure S61. '"H NMR spectrum (500 MHz, T = 298 K) of 9 in acetonitrile-ds.
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Figure S62. '3C NMR spectrum (125 MHz, T = 298 K) of 9 in acetonitrile-ds.
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S13 Mass Spectra
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Figure S$65. Mass spectrum of compound 12.
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Figure S66. Mass spectrum of compound 14.
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Figure S67. Mass spectrum of compound 1.
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Figure S68. Mass spectrum of compound 2.
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Figure S69. Mass spectrum of compound 3.
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Figure S70. Mass spectrum of compound 4.
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Figure S71. Mass spectrum of compound 5.
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Figure S72. Mass spectrum of compound 6.
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Figure S73. Mass spectrum of compound 7.
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Figure S74. Mass spectrum of compound 8.
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Figure S75. Mass spectrum of compound 9.
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Figure S76. Mass spectrum of compound 10.
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