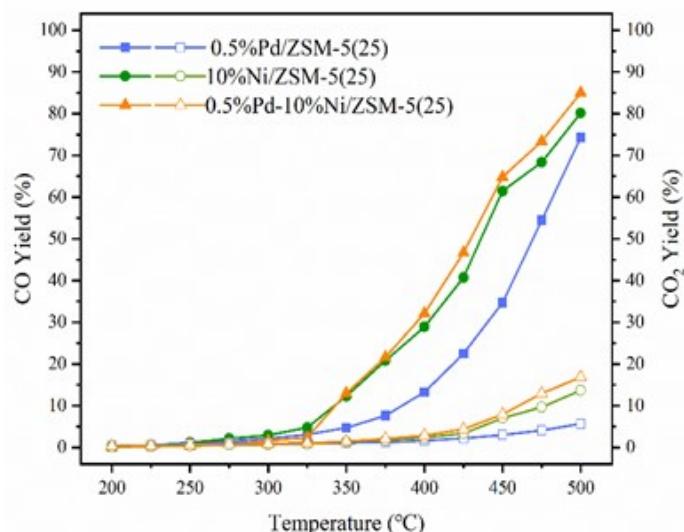


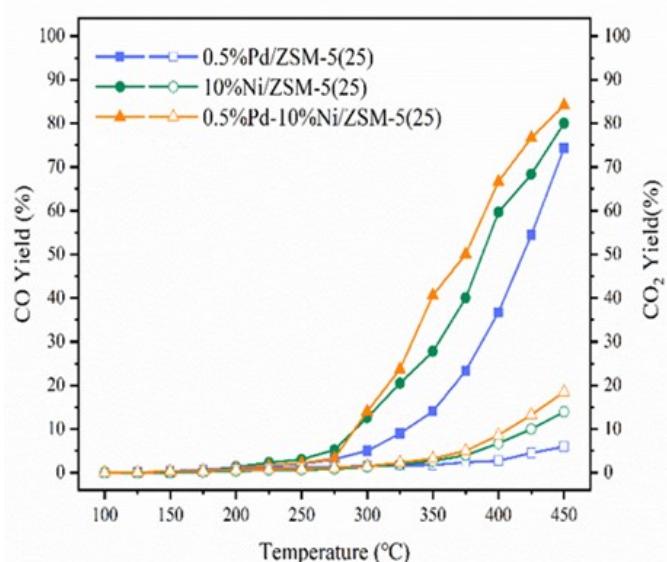
Supplementary Information

Distribution of polychlorinated organic by-products during the hydrolysis oxidation of chlorinated volatile organic pollutants over Pd-Ni-based catalysts

Yuqing Li, Bisi Lv¹, Na Li*, Wenjie Song, Jiahui Zhou, Caifei Ni, Wenlong Fu, Zhen


Han

College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province, 266590, P.R.China


2.3 Catalytic performance evaluation

The gas stream from the reactor was passed through a six-way valve into an Agilent 6890 gas chromatograph, which was equipped with a DB-624 capillary column (30 m × 0.32 mm × 1.8 μm) and was used as an analytical tool for the determination of 1,2- DCB and organic by-products using an FID detector. During the detection process, the column oven temperature was first held at 50 °C for 1 minute, then ramped up to 140 °C at a rate of 10 °C per minute, and finally maintained for 5 minutes. Method detection limits (MDLs) for representative chlorinated aromatic by-products including Benzene, Chlorobenzene, and Dichlorobenzene were determined in accordance with the U.S. EPA Method 40 CFR Part 136 (signal-to-noise ratio, S/N = 3). Under ambient temperature and pressure (25 °C, 101.325 kPa), the MDL ranges of the target analytes in gas-phase samples were determined to be $1.5 \times 10^{-2} \sim 6.0 \times 10^{-2}$ ppm, $1.0 \times 10^{-2} \sim 4.5 \times 10^{-2}$ ppm and $1.0 \times 10^{-2} \sim 3.33 \times 10^{-2}$ ppm, respectively.

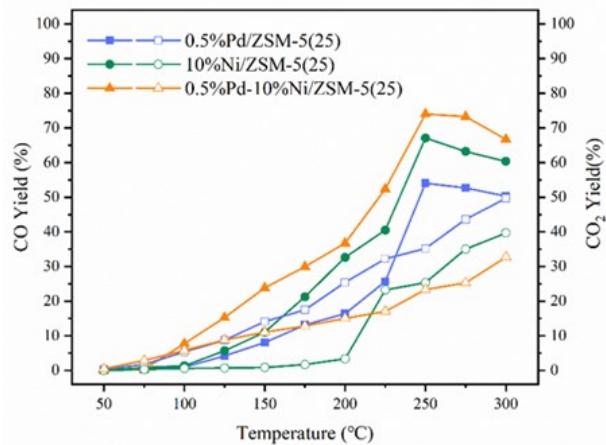

The concentrations of CO₂, CO, and HCl at the outlet were analyzed online using an FTIR spectrometer (MKS, MultiGasTM2030). The generation of Cl₂ was measured by bubbling the outlet gas stream into 0.0125 M NaOH solution for 20 minutes. The concentration of Cl⁻ (produced from Cl₂) was determined using an ultraviolet-visible spec-trophotometer (Purkinje, TU-1810PC, China) with N,N-diethyl-p-phenylenediamine (DPD) as the indicator.

Fig. S3.1 Variation of CO yield (left vertical axis) and CO₂ yield (right vertical axis) with temperature during hydrolysis oxidation of 1,2-DCB.

Fig. S3.2 Variation of CO yield (left vertical axis) and CO₂ yield (right vertical axis) with temperature during hydrolysis oxidation of CB.

Fig. S3.3 Variation of CO yield (left vertical axis) and CO₂ yield (right vertical axis) with temperature during hydrolysis oxidation of *o*-chlorophenol.