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Figure S32: °C NMR Spectra of 28.

70

.
.



[~1400000

1300000

[~1200000

1100000

[~1000000
[~900000
800000
700000
600000
500000
400000
300000
200000
[~100000
-100000

m
~
o
o
T

ooo.o./

195'T
Z6S'T
68T
998'1
s8s'T
106°T
SEG'T
66T
S96°T
86°T
120'E
€e0E L
9b0'E

£0P'E
LOV'E
STH'E
STH'E
0ZLE
YTLE
TEL'E
THLE
1SL'EY
6SL'E
ET8E~
6E8'E”)
b8
SS8'E
098°'E
8E£6'E]
8b6°€ |
ES6'E
¥96'E
050°t
850t
£90'%
90t
198's—
5669

8669

¥10°L

8T0°L

ZE0'L

SE0'L

T6T'L

9TEL
6TEL]
6EE'L

%

e

=

YL

#vi
Tov'L
szLL
osL'L
Wil
o
06L'L
S6L°L
£08°L
zi8'L

L—"lo

60T
L0t
WBA

= =50%

FS0°T
20°T

— I 20°'T

a4 d

Bl =80T

00T

A w'T

S 1 =T0T

- 60T
M JLov

0.0

0.5

1.0

T

1.5

T
25 20

T
35 3.0

4.0

T T
50 45
1 (ppm)

T
5.5

T
6.0

"H NMR Spectra of 29.

6.5

7.0

7.5

8.0

Figure S33

9.5

1500000
[~1400000

1300000

[~1200000

[~1100000

1000000

[900000

800000

[~700000

600000

500000

400000

300000
200000
[~100000

TEG'ST—
vT6'8T —

TET'Eb
LL9vh—
vz0op

STT'89—

th.wh./
Nmo.hhﬂ
0LELL

009°0TT—

£59°9TT
86T LTT—
£98°0ZT~
619121
£96'STT—
0£€'8TT
89LZET -,
006ZET

66T°0PT —

8ES'TST —

T6T'8ST ~
+YIT'09T—

16r0 15‘0 14IO 150 léﬂ 11‘.0 160 9‘0 8'0
13C NMR Spectra of 29.

Figure S34

T
170

1 (ppm)

.
.



2100000
2000000
1900000

1800000
1700000
1600000
1500000
1400000
1300000
1200000
1100000
1000000
900000
800000
700000
600000
500000
400000
300000
200000
100000

-0

-100000

000°0-~
€00

L80'E
mmc.nW
<IT'E

£€66'E
9200t
610}

8L0°%
160°%

SOT'
£ECh
LY
92855~
TLTL
S8T'L]
88T'L]
T6TL]
90T"L
60Z°L
89T°L
0zs'L |
£25°L
TH5'L T
YbSL
165°L
S65°L
809°L
719°L
§99°L|
699,
98927
069
€18°L
ST8°L]
8T8,
628°L ]
s€8°L]
698 ]
££8°L
8L8'L
068°L
268'L
$68°L-

T

|

|
. JLJJ R [ TR S |

I

=00

b0
00T
=00z

=T0C

=707
JTOT
70T
Mmo.ﬂ

0y

OE+05
F8E+05

F8E+05

r8E+05

7E+05

F6E+05

FBE+05

FBE+05

rSE+05

r4E+05

F4E+05

F4E+05

F3E+05

F2E+05

r2E+05

r2E+05
F1E+05
Fo0000

-0

rOT'EY
00E'ER
B806'S¥
CED'9F
TCT i

T T T
15 1.0 0.5 0.0

T
2.0

T
2.5

LEL'OL
wma.th
CLE'LL

T T
3.5 3.0

45 4.0
f1 (ppm)

T
5.0

ELVTTT
TOS PTT
9SL' 9T
mﬂo....._uW
SYTLTT
0ZL 6TT—
08E£'ZZI
zIv'zzr
vwm.muﬂW
198921
czesz)
PLE'TET-
£ZLEET

T
5.5

6.0

"H NMR Spectra of 30.

6.5

7.0

B8Z0'0PT
Z66'ZPT
G6E'EPT
9BL'EPT-T
SLT PPT

7.5

8.0

ZOT' IST-
BT PST—
S56'95T~_

T
8.5

.

.

9.0

Figure S35

9.5

<S8 PIT—

).0

165 160 155 150 145 140 135 130 125 120 115 110 %ES( lU]U a5 a0 a5 a0 75 70 65 60 55 50 45 40 35
ppm
Figure S36: °C NMR Spectra of 30.

170



1600000
1500000
1400000

[~1300000

1200000

1100000

[~1000000

900000

800000

700000

600000

500000

400000

1300000
200000
100000

ro

r-100000

on
o~
es
?%

0551
695°1
6LS°T
z851
685°1
£65°T
00911
£58°T1
08T
688'T | ﬁ
S06°T+
SL6'T
7661
£00°7-
8b0'E
190°€
£L0°E
vZLE
8TLE
SvLE]l -
ToL€
ob8'E
LS8'E
T98'E
£56°E
uum.mw -
66
850
£90°Y
9s0t
p80't
6102
L6T'L
b8eL
98E'L
96€°L
86€°L

90t°L
9TP'L
8TH'L
LIV'L
LEP'L
'L
St'L

8Sb"L
Zov°L-%
896°L
6L
vi6L
8L6°L
886°L
T66°L
v66°L

1ZL8
STL'8
veL's

BEL'S
16’8
vZ6'8
LT6'8
676’8

80T
60°C
W SO0°'T

Ev0¥
90T
s
e

oot

=10°F
00°C
£ 10T

=10'T

=00°T
660

-0.5

0.0

1.0

1.5

3.0

7.0 6.5 6.0 5:5 5.0 4.5 4.0
"H NMR Spectra of 31.

7.5

9.0

Figure S37

1 (ppm)

[~1300000
[~1200000

1100000

[~1000000

[~900000

800000

[~700000

600000

[~500000

400000

300000

200000
100000

Z16'ST
616'87
(43 o
0ZS'9E~.

QLT EP_
$69'b—
6209v 7

8TL'E9—
viT'89—
LTL9L
90°LL
mmm.nh\.

E8S0TT —

6T6°0ZF
TL9'TZT—
6LLETT,
svs'szr”
TISTET
POS'TET
Lhy'SET

SIS'8PT —
09+"EST —

ZIT'09T —
8T9°T9T—

™ -0

10

40

léﬁ IFLU 1“!0 1;;0 12‘0 1‘10 1'.‘)0 20 Eb
13C NMR Spectra of 31.

Figure S38

T
170

30

1 (ppm)

.
.



2000000
1900000

1800000

1700000

1600000

1500000

1400000

1300000

1200000

1100000

1000000

900000

800000
700000
600000
500000
400000
300000
200000
100000

N
in
b}
"

e

-
3
L]
o,
A i p—

590'T
S0'T
Wwo..ﬁ

=L0%

L0'T
20T
£0'T

Wmoé

40T

F00'T

/20T
z0'T
00
$0'T

10T

6.0

"H NMR Spectra of 32.

6.5

7.0

7.5

8.0

8.5

9.0

Figure S39

9.5

50 4.5 4.0 35 3.0 25 2.0 1.5 1.0 05 0.0

5.5

.0

f1 (ppm)

1300000
~1200000

1100000

[~1000000

[~900000

800000

700000

600000

500000

400000

[~300000
200000
[-100000

8E6'ST—
Y1687~
9¥6'0E—

EITEb~
699" b —
8TZ'9b

8TT'89—

th.wh./

1

Ho'LL
oom.hh\.

T6S'0TT—

T98°0TT

nmv:nﬂ.nV
6S6°STT
669°LZT~-
m.nN.Nm.n/
mmm.nmﬁﬂ.
uﬁh.ﬂmﬂ\
8ES'SET

8T6'TST—

TTE'BST ~
TOT'09T

T
80

90
1 (ppm)

16r0 15‘0 lAO 150 150 110 160
13C NMR Spectra of 32.

Figure S40

T
170




1400000

[1300000

1200000

1100000

1000000

[~900000

800000

700000

600000

500000

400000

300000
200000

100000

o

-100000

569

SL0°L
16072~
560°L
60T°L)
L
zoz'L
60E°/ ]
61E"L]
EThL ]
LWL
SEb'L
BEP'L
505°Z
605°L
615
£25'L
9z5°L
6Z5°L
s'L

e

|

[

il

90T
€0'T
W.mﬂ_..n

=b0¥

=T0T
o'z
10T
Wﬂa.v
=0T

oot

~10°T
=0T
JEOT
=10°T
*zoz

T T
0.0 -05

0.5

T

1.0

1.5

2.0

2.5

3.0

T
3.5

4.0

E.’S B.’O 755 7jﬂ 5:5 5:0 5:5 5.‘0 4.5
1 (ppm)
"H NMR Spectra of 33.

9.0

Figure S41

1300000

1200000

1100000

1000000

900000

800000

700000

600000

500000

400000

300000
200000
100000

ro

v6'ST —
0Z6'8T—

S80'Eb-~
9£9'bb—
6sT'9b

TET'89—

MMh.th.
Hmo.nh\
mum.hh

ET9'0TT —

£68°0TT~
095'TZT—
1S6'SZT~
T LTI
0ZETET~.
(SLTETS
SPE'EET

£95°LeT7

068'TST—

TST'8ST~
STT09T—

1L

70

1E|.0 15‘0 1“'0 13‘0 12‘0 11‘.0 1(‘)0 90
13C NMR Spectra of 33.

T
170

Figure S42

30

1 (ppm)

.
.



1600000
1500000
[~1400000

[~1300000

1200000

1100000

1000000

900000

800000

[~700000

600000

500000

400000
[~300000
200000
100000

o

-100000

000°0-~-
EL0'0

YoE'Y
BLEY
T6EY

zE0'S—
S56'9
5969
L
(73
88T°L
T6T°L
S6I'L
60T°L
Z1Z°L
9T
£2E'L
£EE'L
obs'Ly

L

|

\

JL_L .

G

EbS"LA
19572\
$oS'L
L6S°L
109°2]
¥19°2]
819°2
zzo'L |
SE9'L
6E9°L
sL9°L
6L9°L
969°L
669°L

)

=00

10y
ro'z
10T

=0T

00T
£0°T
wno.ﬂ
00°T
mna.ﬂ
00T

r1E+06

r1E+06

r1E+06

+OE+05

F8E+05

F7E+05

r6E+05

rSE+05

F4E+05

F3E+05

F2E+05
r1E+05

-0.5

9TT'ER
CBT'Er
186'SP
98T 9%
6E6"9F

0.0

T T T T T
1.5 1.0 0.5

2.0

2.5

EZL9L
Nvo.hhw
09E°LL

3.0

T
4.0 3.5

4.5
f1 (ppm)

T

5.0

697 TTT~
9SEPTT
CS0'LTT
OvL 6TT /.
EET'ZZT
¥8T'TZT
E88'ETT~—
068°9CT~,
rOT LT

T
5.5

6.0

"H NMR Spectra of 34.

T
6.5

¥SO'ZET—~
999'EET
CPL'EET
GEL'LET—
9T0EPT
LZV'EPT
OT8'EPT
S0TFPT

T
7.0

T

T
75

8.0

8.5
.
.

LITTST
EEE'PST—
9E0'LST~_

T
9.0

Figure S43

098" P91 —

9.5

75 70 65 60 55 50 45 40

80

165 160 155 150 145 140 135 130 125 120 115 110 11105[[] 1?0 as ap
pm
Figure S44: >°C NMR Spectra of 34.

70

.
.



1500000

1400000

1300000

1200000

1100000
1000000
900000
[~800000
700000
600000
500000
[~400000
300000
200000
[~100000

[--100000

E §E 1600000
wS9
(e

090°E
ELO'E
9E6E
9b6°E
0S6°E
T96'E
900t
(1148 4
EE0'Y
8T
S6T'
60EL

L—to

W

R

=00'%

00'v
[41 x4
FE0T

=10

€0'T
o Z0'T
Mao..ﬁ
E0°'T
10T
10T

=00°T
00T

0.0

T
0.5

T

1.0

T

1.5

T

T T T
3.5 3.0 25 2.0

T
4.0

T T
5.0 4.5
1 (ppm)

T
5.5

6.0

"H NMR Spectra of 35.

T
6.5

T

T T T T
8.5 8.0 7.5 7.0

9.0

Figure S45

HE+06
r4E+06
F4E+06

r4E+06

F3E+06

r3E+06

3E+06

F3E+06

r3E+06

F2E+06

F2E+06

F2E+06

r2E+06

2E+06

F1E+06

r1E+06

F1E+06

r8E+05

FBE+05

r4E+05

F2E+05

OEL'SE
6E6'BE

§

6SE'6E
895°6E
BLL'6E
£86°6E
S9T'EY
£0S°S¥
S86°St
LIL 9%

810°€9—

925" TTT~_
LEVPTT
EAALAE
£50°0Z1
zor' nnﬂ/
zer Nnﬂﬁ
660°SZT
LzE'STI-
oLo'9z1

000'ZET—
BEG'EET—
LO9T' 9ET—

809'ZHT
698'ZPT
6PT'EPT
YIS EPT
E86'LPT—
PPT'ZST
oL mm.n#
60T PST-
£60' LT~

PLE POT—

165 160 155 150 145 140 135 130 125 120 115 110 ]1.:25( ID]D 95 a0 85 a0 75 70 65 60 55 50 45 40 35
ppm
Figure S46: °C NMR Spectra of 35.

70

.
.



1700000
1600000

1500000

[~1400000

[~1300000

1200000

[~1100000

[~1000000

900000

[~800000

[~700000

600000
500000
[~400000
300000
200000
100000
[-100000

=00%

- 0P
) g0z

=0T

=L0'T

Wt

vo'T

] 10T
———— {1or
1ot

0.0

1.0 0.5

1.5

2.5

3.0

T
4.0

50 45
1 (ppm)

T
5.5

T
6.0

"H NMR Spectra of 36.

T T
7.5 7.0 6.5

T
8.0

T

T
85

9.0

Figure S47

1E+06
FOE+05

FBE+05

r8E+05

rBE+05

F7E+05

6E+05

FBE+05

r6E+05

rSE+05

F4E+05

F4E+05

FE+05

r3E+05

r2E+05

F2E+05
2E+05
F1E+05
30000

ro

LITER
SGT'ER
109t
68T 9%
v68'9F

SEL'OL
Nmo.hhw
OLE'LL

ETV'TITTI—
6ZY PTT-
PO LTT
m.:..m.n.n./.
T91°CC1
CET'ZZT
988'ETT—
Fr8 92T~
E6LLZT—

00F' ZET
E69'ZET W
059'EET
ory mn.nL_w

LOO'EPT
0V EPT %
YIS EPT \\.
66T b

TZE ST
£ZE PST—
S80'£ST~_

8I8'#IT—

160 155 150 145 140 135 130 125 120 115 110 %105( I]UU 95 ag 85 80 75 70 65 60 55 50 45 40
ppm
Figure S48: °C NMR Spectra of 36.

165

.
.



MS Spectrum

10 6|Cpd 1: C13 H14 CIN3 O: + FBF Spectrum (0.167 min) 12.d Subtract
264.0898
3 (M+H)+
15/
1.
0.5-
e I

240 245 250 255 260 265 270 275 280 285 290 295 300 305 310
Counts vs. Mass-to-Charge (m/z)

Figure S49: HRMS of Compound 13. Observed molecular ion peak at 264.0898 (m/z), which
corresponds to [M+H]".
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Figure S50: HRMS of Compound 14a. Observed molecular ion peak at 314.1975 (m/z), which
corresponds to [M+H]".
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Figure S51: HRMS of Compound 14b. Observed molecular ion peak at 315.1817 (m/z), which
corresponds to [M+H]".
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Figure S52: HRMS of Compound 16. Observed molecular ion peak at 355.0678 (m/z), which
corresponds to [M+H]".
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Figure S53: HRMS of Compound 17a. Observed molecular ion peak at 405.1758 (m/z), which
corresponds to [M+H]".
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Figure S54: HRMS of Compound 17b. Observed molecular ion peak at 406.1602 (m/z), which
corresponds to [M+H]".
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Figure S55: HRMS of Compound 19. Observed molecular ion peak at 545.1730 (m/z), which
corresponds to [M+H]".
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Figure S56: HRMS of Compound 20. Observed molecular ion peak at 541.2225 (m/z), which
corresponds to [M+H]".
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Figure S57: HRMS of Compound 21. Observed molecular ion peak at 632.2013 (m/z), which
corresponds to [M+H]".
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Figure S58: HRMS of Compound 22. Observed molecular ion peak at 587.1798 (m/z), which
corresponds to [M+H]".
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Figure S59: HRMS of Compound 23. Observed molecular ion peak at 499.1756 (m/z), which
corresponds to [M+H]".
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Figure S60: HRMS of Compound 24. Observed molecular ion peak at 499.1759 (m/z), which
corresponds to [M+H]".
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Figure S61: HRMS of Compound 25. Observed molecular ion peak at 504.2068 (m/z), which
corresponds to [M+H]".
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Figure S62: HRMS of Compound 26. Observed molecular ion peak at 590.1545 (m/z), which
corresponds to [M+H]".
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Figure S63: HRMS of Compound 27. Observed molecular ion peak at 590.1542 (m/z), which
corresponds to [M+H]".
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Figure S64: HRMS of Compound 28. Observed molecular ion peak at 595.1845 (m/z), which
corresponds to [M+H]".
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Figure S65: HRMS of Compound 29. Observed molecular ion peak at 479.1862 (m/z), which
corresponds to [M+H]".
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Figure S66: HRMS of Compound 30. Observed molecular ion peak at 570.1646 (m/z), which
corresponds to [M+H]".
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Figure S67: HRMS of Compound 31. Observed molecular ion peak at 455.1856 (m/z), which
corresponds to [M+H]".
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Figure S68: HRMS of Compound 32. Observed molecular ion peak at 460.1474 (m/z), which
corresponds to [M+H]".
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Figure S69: HRMS of Compound 33. Observed molecular ion peak at 494.1082 (m/z), which
corresponds to [M+H]".




MS Spectrum

x10 6 |Cpd 1: C22 H20 CI F3 N8 O2 S2: + FBF Spectrum (0.068, 0.135-0.152 min) CGL-34.d Subtract
1.751 S(ﬁ;(fﬁs
1.5
1.25-
1
0.751
0.5
0.25-

0 : - - —— l L. - - : . - v - : .
560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635
Counts vs. Mass-to-Charge (m/z)

Figure S70: HRMS of Compound 34. Observed molecular ion peak at 585.0865 (m/z), which
corresponds to [M+H]".
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Figure S71: HRMS of Compound 35. Observed molecular ion peak at 546.1644 (m/z), which
corresponds to [M+H]".
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Figure S72: HRMS of Compound 36. Observed molecular ion peak at 551.1250 (m/z), which
corresponds to [M+H]".
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Figure S73: Parasite per cent growth inhibition plots at different concentrations of the test
compounds. The initial concentration of the test compounds was 100 uM.
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Figure S74: Parasite per cent growth inhibition plots at different concentrations of the test
compounds. The initial concentration of the test compounds was 50 uM for (a), 25 uM for (b),
and 12 uM for (c).
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Figure S75: Correlation curve for validation of docking study; (a and b) for P/FP2; (c and d)
for PfFP3; (e and f) for P/FLN. The variables in the equation of a straight line are defined as
y = docking score; x = predicted ICso value.
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Figure S76: 2D ligand-protein interaction presentation for complex 19-PfFP2.
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Figure S77: 2D ligand-protein interaction presentation for complex 27-PfFP2.
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Figure S78: 2D ligand-protein interaction presentation for complex 19-PfFP3.



M\
P

GLN N
45 N \ crs
\N N / 89
I \
N TYR
TRP LEQ el 3
215 & S oYs /49 \
< GLY
91
N\ \
O
cYs =
51 O¢' = 2;*
| < \
TRP \
52 //N* 'I;:‘;l
o]
PRO | ASN
181
S \ HIE — ?EI{?
183
) Charged (negative) Polar Distance —e
) Charged (positive) o) Unspecified residue -»= H-bond —_—
Glycine Water Halogen bond
Hydrophobic Hydration site — Metal coordination
) Metal X Hydration site (displaced) e—e Pi-Pi stacking

Figure S79: 2D ligand-protein interaction presentation for complex 27-PfFP3.
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Figure S80: 2D ligand-protein interaction presentation for complex 19-PfFLN.
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Figure S81: 2D ligand-protein interaction presentation for complex 27-PfFLN.
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Figure S82: RMSD plots for the (a) apo PfFP2, (b) P/FP2-19, and (c) PfFP3-27 complexes.
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Figure S83: RMSD plots for the (a) apo PfFP3, (b) P/FP3-19, and (c) PfFP3-27 complexes.
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Figure S84: RMSD plots for the (a) apo PfFLN, (b) P/FLN-19, and (c) P/FLN-27 complexes.
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Figure S85: RMSF plots for the (a) apo PfFP2, (b) P/FP2-19, and (c) P/FP2-27 complexes.
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Figure S86: RMSF plots for the (a) apo PfFP3, (b) PfFP3-19, and (c) PfFP3-27 complexes.
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Figure S87: RMSF plots for the (a) apo P/FLN, (b) PfFLN-19, and (c) P/FLN-27 complexes.
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Figure S88: Protein-ligand contact histogram for PfFP2-19 complex during MD simulation.
The value 0.1 suggests that 10% of the simulation time, the specific interaction was maintained.
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Figure S89: Protein-ligand contact histogram for P/FP2-27 complex during MD simulation.
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Figure S90: Protein-ligand contact histogram for P/FP3-19 complex during MD simulation.
Note: it is possible to have interactions with >100% as some residues may have multiple
interactions of a single type with the same ligand atom.
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Figure S91: Protein-ligand contact histogram for P/FP3-27 complex during MD simulation.
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Figure S92: Protein-ligand contact histogram for P/FLN-19 complex during MD simulation.
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Figure S93: Protein-ligand contact histogram for P/FLN-27 complex during MD simulation.

ADME Prediction and Drug-Likeness of the Compounds

Physicochemical properties are one of the key factors to predict the drug-like nature of the test
compound. The solvent-accessible surface area (SASA), hydrophilic and hydrophobic content
of SASA, prediction of per cent human oral absorption, QPlogS, etc., are physicochemical
parameters that significantly affect the ability of the compounds to interact with the target
protein. Similarly, Lipinski’s rule of five, rule of three, etc., are used to predict the oral
bioavailability of the compounds. Therefore, FISA (a hydrophilic component of the SASA),
FOSA (a hydrophobic component of the SASA), %HOA (per cent human oral absorption),
QPlogS, QPlogKhsa, rule of five, rule of three, SASA, molecular weight, number of hydrogen

bond donors and acceptors, etc, were calculated and discussed in Table S1.

Table S1: Physicochemical and ADME properties of the compounds:
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13 26373292 1.0| 42| 3836 199.42 | 100.00 | -3.42 | -0.05 0| 0] 480.72
14a | 313.40 | 229 | 2.0| 62| 53.58 | 344.76 | 91.98 | -2.77 | 0.09 0| 0] 568.06
14b | 314.39 [ 3.15] 1.0| 6.4 | 23.20| 370.92 | 100.00 | -3.86 | 0.08 0| 0156735




16 |354.72 13.63| 00| 45| 78.81 | 108.73 | 100.00 | -5.06 | 0.16 0] 0] 549.06
17a | 40440 | 2.87 | 1.0 | 6.5] 99.19 | 222.03 | 87.62 | -3.83 | 0.38 0] 0] 584.62
17b | 40538 | 3.38 | 0.0 | 6.6 | 70.71 | 255.47 | 100.00 | -4.47 | 0.06 0] 0] 596.83
19 | 545.06 |391 | 2.0 | 11.7|142.42 | 433.59 | 84.25| -7.45| 0.36 1 1 | 897.66
20 [540.64 |3.06 | 2.0 124 | 144.79 | 457.22 | 65.87 | -5.90 | 0.07 2| 1] 847.80
21 [631.64 1348 | 1.0 |12.7 | 177.77 | 349.15| 62.74 | -6.37 | 0.25 2| 1] 843.54
22 [ 586.591295] 0.0 11.5|180.41 | 237.71 | 59.18 | 4.70 | -0.21 2| 0]769.90
23 [498.56 1299 | 1.0 10.2 | 181.03 | 302.55 | 7230 | -5.58 | 0.16 1| 0]779.22
24 |498.56 1339 | 1.0 |10.2 | 152.05 | 30943 | 79.57| -5.70 | 0.23 1| 0] 786.32
25 [503.62 1470 ] 1.0 9.2 | 78.55]| 308.79 | 100.00 | -6.78 | 0.58 1 1| 816.00
26 [ 589.55|2.88 ] 0.0]10.5|220.16 | 160.13 | 52.06 | -5.11 | -0.09 2| 0] 763.01
27 [589.553.10] 0.0 [10.5| 17572 | 15421 | 60.90 | -4.66 | -0.14 2] 073942
28 [594.62 1472 ] 0.0 9512549 | 168.55| 91.87| -6.61 | 047 1 1 | 804.15
29 [478.57 1295 ] 1.0 ]10.7 | 156.66 | 302.13 | 89.13 | -6.41 | 0.04 0] 1] 780.56
30 | 56957281 ] 0.0]11.0]195.67 | 160.12 | 55.78 | -5.88 | -0.23 2| 1]764.35
31 | 45455281 | 1.0]10.7 ] 106.96 | 308.90 | 96.77 | -4.87 | -0.13 0] 0] 739.98
32 145958 |3.66| 1.0 92| 81.44 | 308.34 | 100.00 | -5.51 | 0.16 0] 0] 733.63
33 149403 |4.16| 1.0] 92| 81.50 | 308.55 | 100.00 | -6.26 | 0.27 0] 1]759.49
34 |585.02[424| 0.0 9.5]130.57] 17148 | 88.18 | -6.18 | 0.17 1 1| 756.54
35 |54555(269| 0.0 11.0 ] 155.87 | 168.11 | 61.84 | -4.48 | -0.37 2| 0] 733.03
36 | 55058 [3.59] 0.0 9.5]132.68 | 178.53 | 84.00 | -5.17 | 0.02 1| 0] 723.79
CQ [319.871195] 1.0| 3.0 24.08 | 373.47 100 | -4.55] 0.59 0] 0]656.11

The ADME parameters were predicted using the QikProp module of Schrodinger 2021-2. SASA: Total
solvent accessible surface area in square A (300.0 — 1000.0); FOSA: Hydrophobic component of the
SASA (0.0 — 750.0); FISA: Hydrophilic component of the SASA (7.0 — 330.0); QPlogS: Predicted
aqueous solubility in mol/dm? (-6.5 — 0.5); #metab: The number of likely metabolic reactions (1 — 8);
QPlogKpsa: Prediction of binding to human serum albumin (-1.5 — 1.5); %HOA: Percent Human Oral
Absorption (>80% is high, <25% is poor); Rule of Five: The rules are: mol MW < 500, QPlogPo/w <
5, donorHB < 5, accptHB < 10. The compounds that follow this rule are considered more drug-like.
The Rule of Three consists of three rules: QPlogS > -5.7. The compounds that follow this rule are
considered more orally available.

The calculated and predicted physicochemical parameters of the compounds were compared
with those of current mainline antimalarials, including chloroquine (CQ), primaquine (PQ),
and artemether (AR). According to the biomolecular properties outlined in Table S1, a
significant proportion of the compounds fall within the Schrodinger range, encompassing 95%

of all known medications.



