

Supplementary information

**Rational Design of Au@Pd Core–Shell Cocatalysts on
Titanium Dioxide Enabling Selective Photocatalytic
Formation of Deuterated Alkanes from Lauric Acid and
Heavy Water**

Haifan Huang and Hisao Yoshida*

Graduate School of Human and Environmental Studies, Kyoto University,
Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan

* Corresponding author: yoshida.hisao.2a@kyoto-u.ac.jp

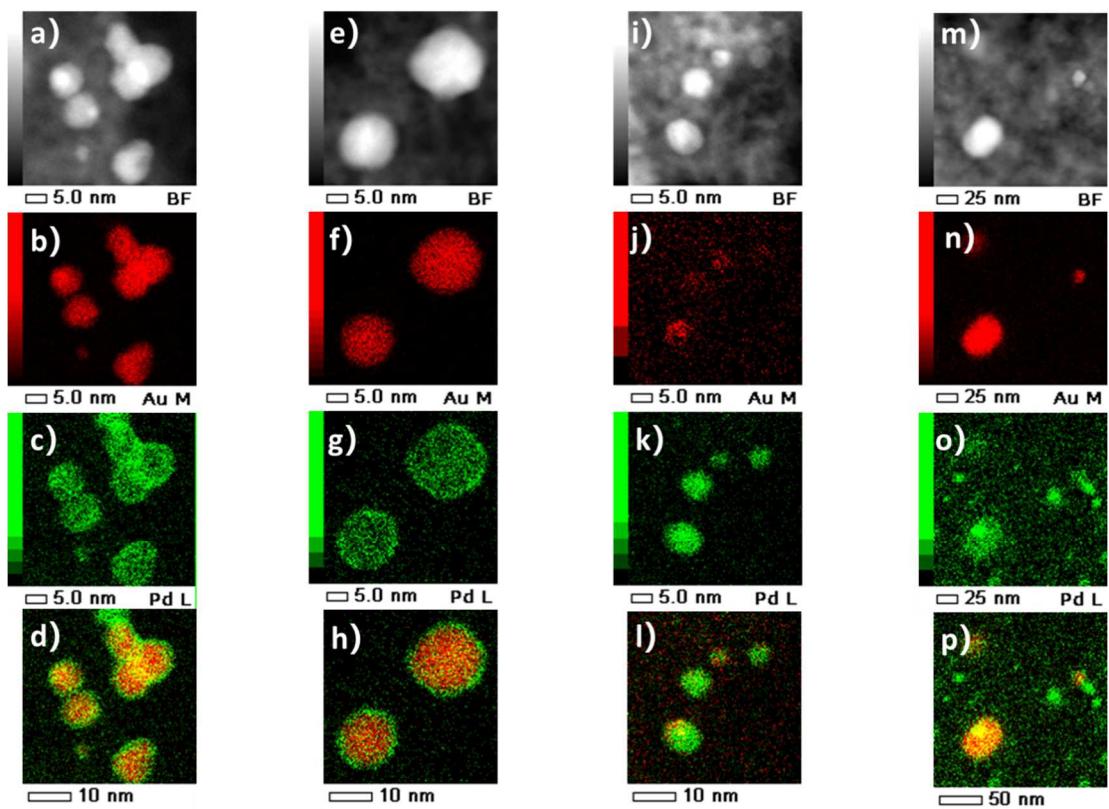


Fig. S1 STEM-EDX elemental mapping of the samples: (a-d) Au1@Pd2/TiO₂, (e-h) Pd2/Au1/TiO₂, (i-l) Au1/Pd2/TiO₂, and (m-p) Pd2(PD)/Au1(CR)/TiO₂. The SPD and PD method was carried out with the light intensity of 76.2 mW cm⁻² and with methanol as a sacrificial reagent. The images (a-d) are reproduced from reference,^{S1} Copyright 2026, Elsevier.

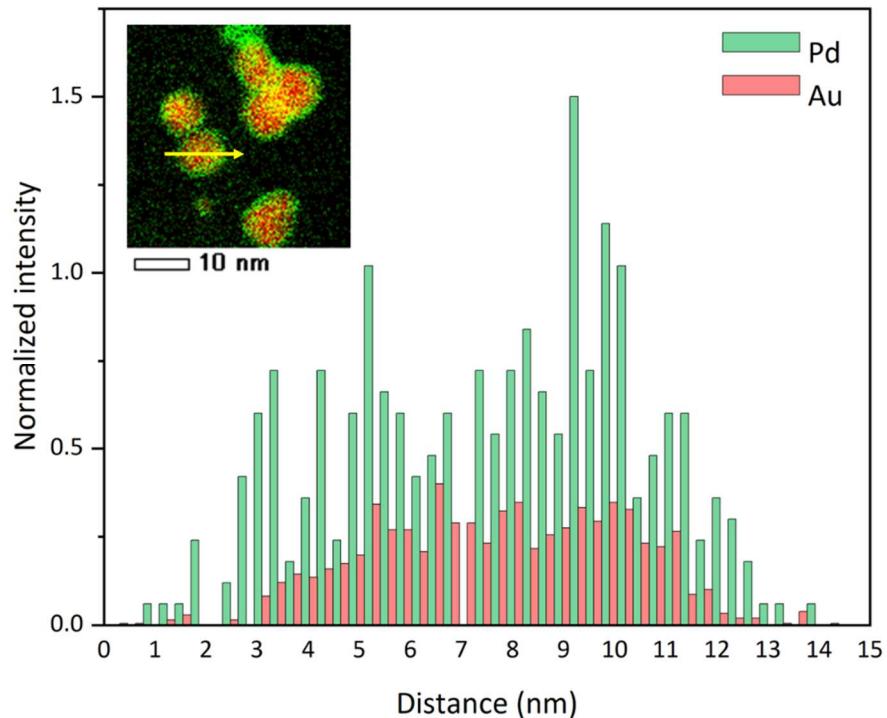


Fig. S2 Line profiles across an Au@Pd particle. The line scan was conducted as indicated by a yellow arrow in the inset image. The intensity was normalized with the atomic ratio of Au and Pd.

Table S1 Photocatalytic decarboxylation deuteration of lauric acid with heavy water over various Pd-Au/TiO₂ photocatalyst samples.^a

Entry	M/TiO ₂ sample ^b	Product ^c (μmol)			Y _{C11-d} (%) ^d	Y _{total} (%) ^e	S _d (%) ^f	R _d (%) ^g
		C _{11-d}	C _{11-h}	C ₂₂				
1	Au1@Pd2	17.2	3.52	0.51	34.4	43.5	79.1	83.0
2	Pd2/Au1	13.5	4.98	0.94	27.1	44.2	66.3	73.1
3	Au1/Pd2	10.0	4.40	0.59	20.1	31.2	64.2	69.5
4	Pd2(PD)/Au1(CR)	7.1	5.51	0.71	14.2	28.0	50.5	56.2

^a Reaction conditions; catalyst 50 mg, the reaction mixture (5 mL) containing LA 40 mg (50 μmol) in D₂O (3 mL) and CH₃CN (2 mL), reaction time 3 h, light wavelength > 360 nm, irradiated light intensity 41 mW cm⁻² when measured at 360 ± 20 nm. Pre-heating was conducted before the reaction. ^b Employed TiO₂ was of anatase (ST-01). ^c C_{11-d} = *n*-undecane-*d*, C₁₁H₂₃D, C_{11-h} = *n*-undecane-*h*, C₁₁H₂₄, C₂₂ = *n*-docosane; ^d Yield of *n*-undecane-*d*, Y_{C11-d} (%) = 100 × A_{undecane-d} / A_{initial lauric acid}; ^e Y_{total} (%) = 100 × (A_{undecane-d} + A_{undecane-h} + 2×A_{docosane}) / A_{initial lauric acid} ^f Selectivity of C_{11-d} to the obtained main products (C₁₁ and C₂₂) S_d (%) = 100 × A_{undecane-d} / (A_{undecane-h} + A_{undecane-d} + 2×A_{docosane}). ^g Ratio of undecane-*d* to sum of undecane-*d* and undecane-*h*, R_d(%) = 100 × A_{undecane-d} / (A_{undecane-h} + A_{undecane-d}).

Table S2 Results of photocatalytic reaction test over several catalyst samples prepared under various light intensity ^a.

Entry	Deposition		Product yield (%)					
	light intensity	Irradiation	C _{11-d}	C _{11-h}	C ₂₂	Y _{total} (%)	S _d (%)	R _d (%)
	(mW cm ⁻²)	time (h)						
1	76.2	1	34.44	7.04	2.04	43.53	79.1	83.0
2	38.1	1	31.83	10.38	2.00	44.21	72.0	75.4
3	19.1	1	25.19	10.59	1.60	37.38	67.4	70.4
4	9.5	1	18.00	10.13	2.67	30.79	58.4	64.0
5	9.5	2	26.33	7.88	3.08	37.28	70.6	77.0

^a Reaction conditions; Au1@Pd2/TiO₂ catalyst 50 mg. For other conditions, see the caption of Table S1.

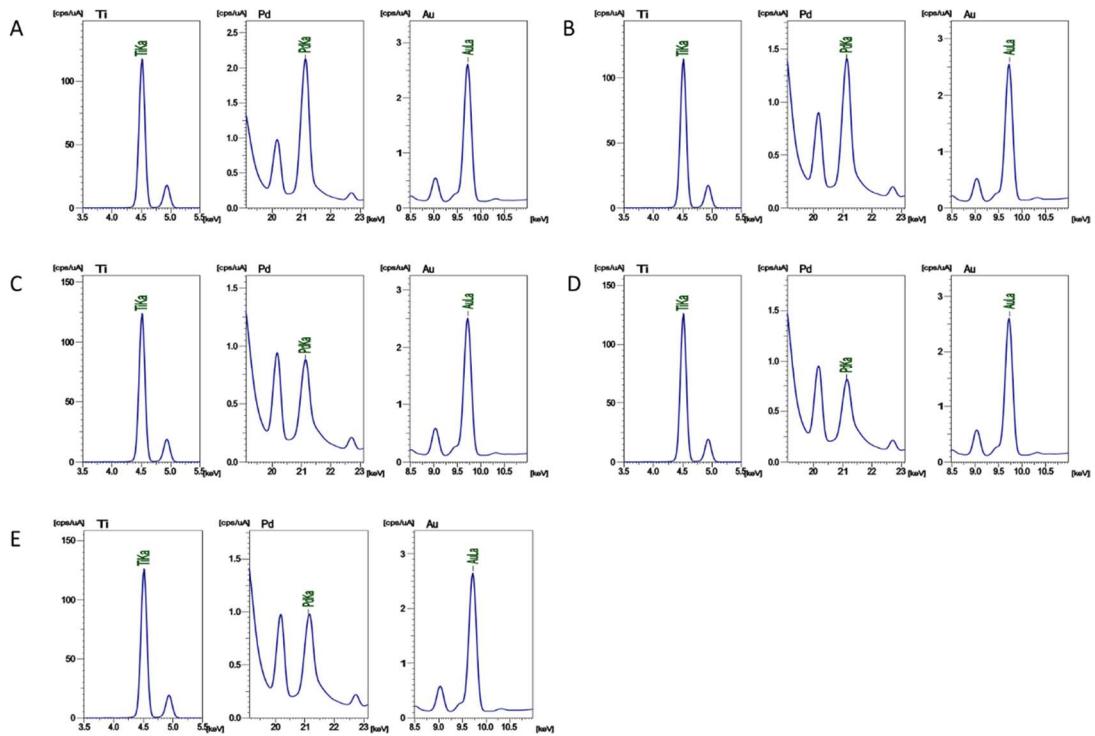


Fig. S3 XRF spectra of each element, Ti, Pd, and Au in the Au1@Pd2/TiO₂ catalysts prepared under different photodeposition light intensities: (A) 76.2, (B) 38.1, (C) 19.1, and (D) 9.5 mW cm⁻² for 1h, and (E) 9.5 mW cm⁻² for 2 h. The actual contents of the samples are listed in Table 1.

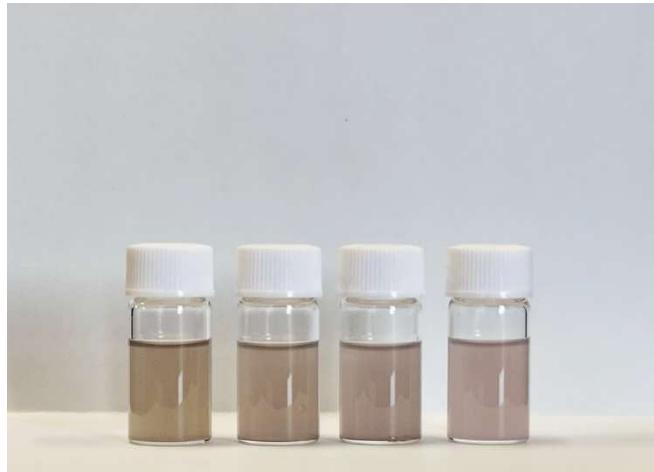


Fig. S4 Photos of the Au1@Pd2/TiO₂ samples prepared under various SPD light intensity; (left to right) 76.2, 38.1, 19.1, and 9.5 mW cm⁻². To enhance the visibility of the sample color, the sample was dispersed in ethanol.

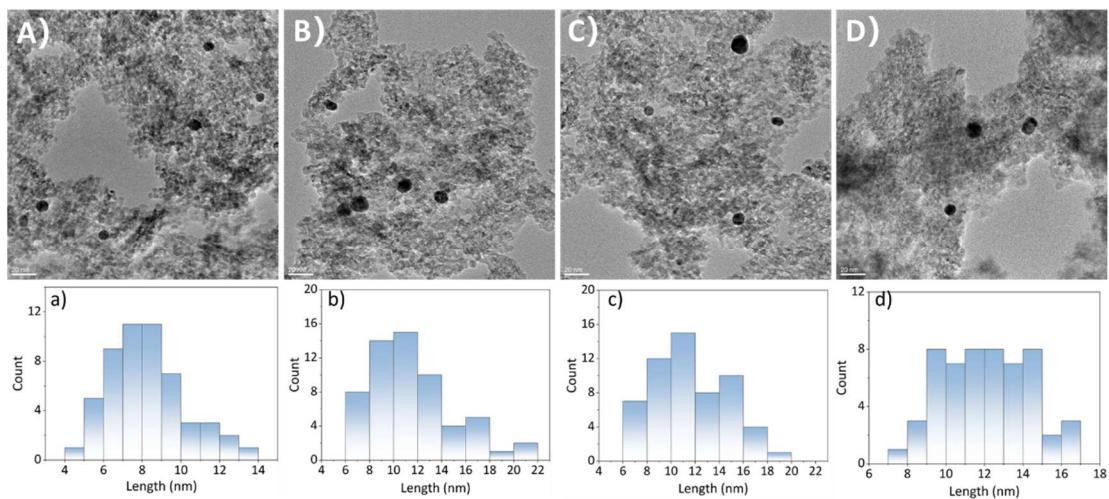


Fig. S5 TEM images of Au1/TiO₂ catalysts prepared under different photodeposition light intensities: (A) 76.2, (B) 38.1, (C) 19.1, and (D) 9.5 mW cm⁻² and the corresponding particle size distribution (a-d).

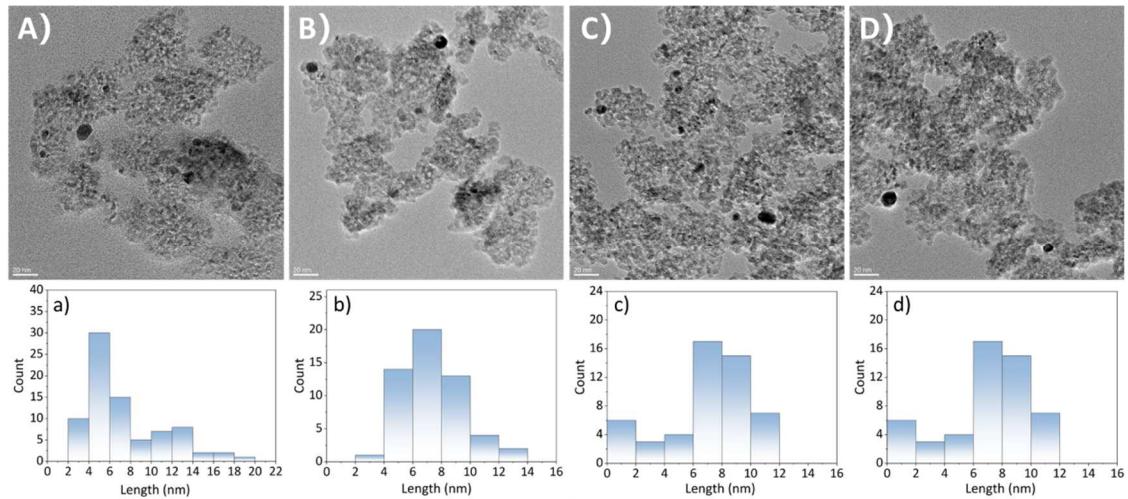


Fig. S6 TEM images of Au1@Pd2/TiO₂ catalysts prepared under different photodeposition light intensities: (A) 76.2, (B) 38.1, (C) 19.1, and (D) 9.5 mW cm⁻² and the corresponding particle size distribution (a-d).

Table S3 Photocatalytic decarboxylation deuteration of lauric acid over Au1/TiO₂ catalyst samples by different preparation methods ^a.

Entry	Light intensity (mW cm ⁻²)	Product yield (%)			Y_{total} (%)	S_d (%)	R_d (%)
		C ₁₁ - <i>d</i>	C ₁₁ - <i>h</i>	C ₂₂			
1	76.2	13.96	10.37	3.75	43.53	49.7	57.4
2	38.1	8.37	12.90	2.69	44.21	34.9	39.4
3	19.1	9.01	13.34	2.65	25.00	36.0	40.3
4	9.5	5.86	13.52	1.88	21.25	27.6	30.2

^a Reaction conditions: Au1/TiO₂ catalyst 50 mg, the reaction mixture (5 mL) containing LA 40 mg (50 μmol), in D₂O (3 mL) and CH₃CN (2 mL), reaction time 3 h, light wavelength > 360 nm, irradiated light intensity 41 mW cm⁻² when measured at 360 \pm 20 nm. Pre-heating was conducted before the reaction. For other conditions, see the caption of Table S1.

Table S4 Photocatalytic decarboxylation deuteration of lauric acid over the Au1@Pd2/TiO₂ catalyst samples by different sacrificial reagents ^a.

Entry	Sacrificial reagent	Loading (wt%) ^b		Product yield (%)			Y_{total} (%)	S_d (%)	R_d (%)
		Au	Pd	C ₁₁ - <i>d</i>	C ₁₁ - <i>h</i>	C ₂₂			
1	methanol	1.09	2.04	34.4	7.04	2.04	43.5	79.1	83.0
2	ethanol	1.09	1.91	30.6	7.67	1.42	39.7	77.1	79.9
3	2-propanol	1.02	1.98	24.5	9.25	1.64	35.3	69.2	72.6
4	acetic acid	1.03	2.01	19.5	9.36	2.20	31.0	62.7	67.5
5	ethylene glycol	1.17	2.34	21.3	10.6	2.83	34.7	61.4	66.9

^a Reaction conditions: Au1@Pd2/TiO₂ catalyst 50 mg. For other conditions, see the caption of Table S1.

^b The intended loading amounts for each sample were 1 and 2 wt% for Au and Pd, respectively. The loading amount is determined by XRF. The XRF spectra are shown in Fig. S5.

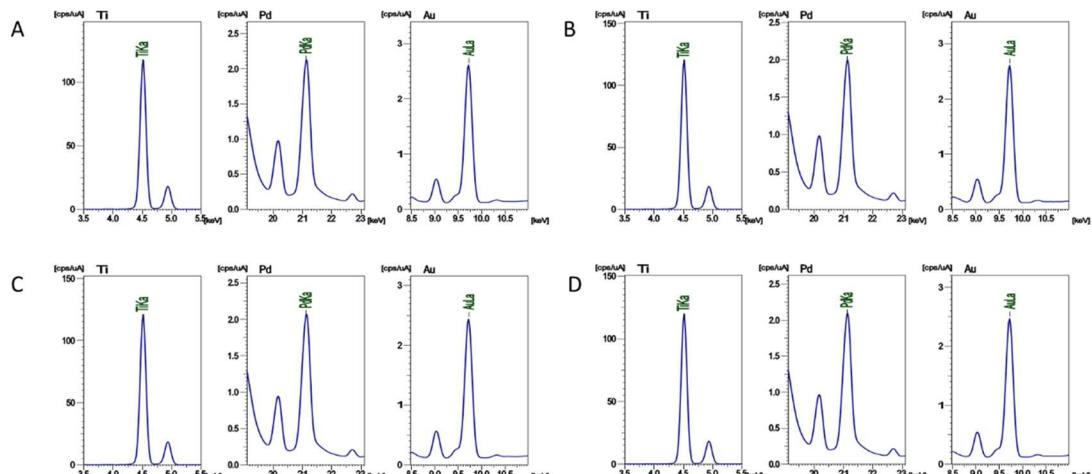


Fig. S7 XRF spectra of each element, Ti, Pd, and Au in the Au1@Pd2/TiO₂ catalysts prepared using various sacrificial reagent: (A) methanol, (B) ethanol, (C) 2-propanol, and (D) acetic acid. The actual contents of the samples are listed in Table 2.

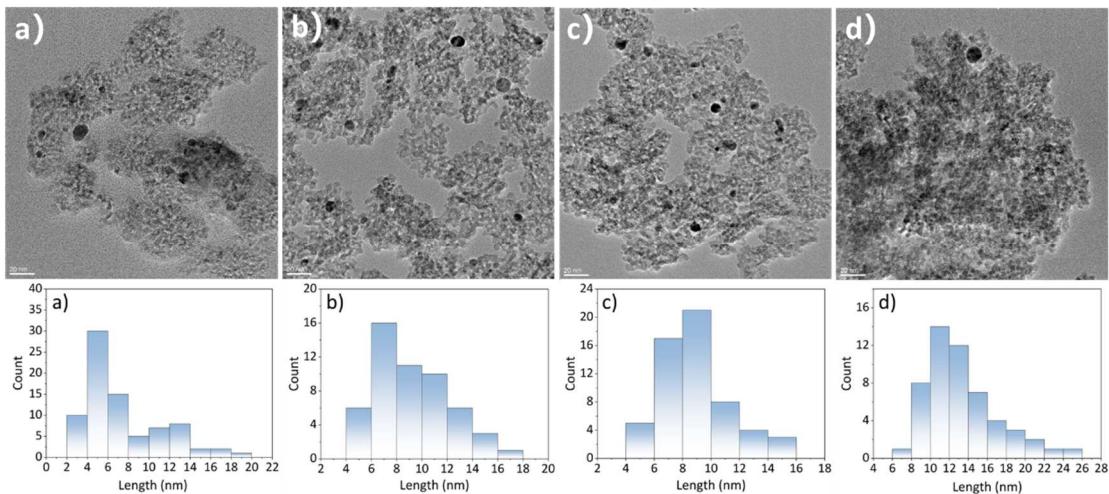


Fig. S8 TEM images of Au1@Pd2/TiO₂ catalysts prepared using various sacrificial reagent: (A) methanol, (B) ethanol, (C) 2-propanol, and (D) acetic acid and the corresponding particle size distribution (a–d).

Table S5 Photocatalytic decarboxylation deuteration of lauric acid over the Au1@Pd2/Ptx/TiO₂ catalyst samples by different preparation methods ^a.

Entry	Au1@Pd2/Ptx/TiO ₂ samples	Product yield (%)			Y_{total} (%)	S_d (%)	R_d (%)
		C ₁₁ - <i>d</i>	C ₁₁ - <i>h</i>	C ₂₂			
1	0.01	26.82	6.00	1.72	34.54	77.7	81.7
2	0.1	24.89	7.41	1.32	33.62	74.0	77.1
3	0.5	23.32	7.58	2.03	32.93	70.8	75.5
4	1.0	11.24	8.60	0.21	20.06	56.0	56.6

^a Reaction conditions: catalyst 50 mg, the reaction mixture (5 mL) containing LA 40 mg (50 μ mol), in D₂O (3 mL) and CH₃CN (2 mL), reaction time 3 h, light wavelength > 360 nm, irradiated light intensity 41 mW cm⁻² when measured at 360 ± 20 nm. Pre-heating was conducted before the reaction. See the caption of Table S1 for other conditions.

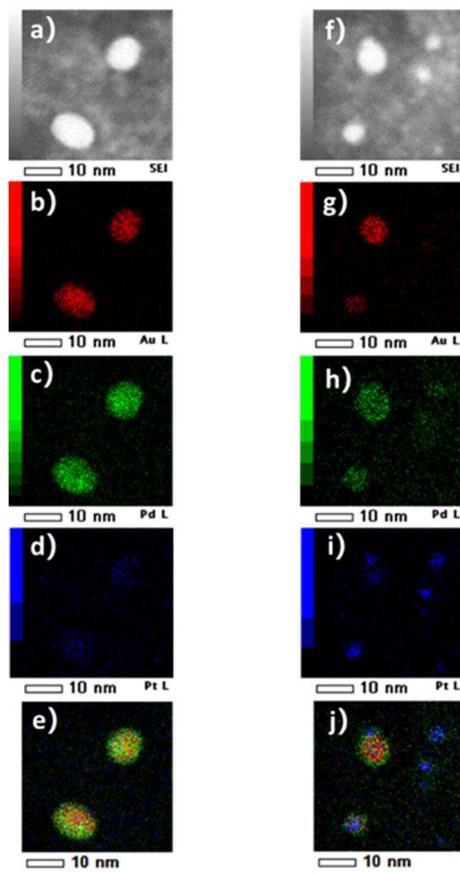


Fig. S9 STEM-EDX elemental mapping of the: (a–e) Au1@Pd2/Pt0.01/TiO₂ and (f–j) Au1@Pd2/Pt1.0/TiO₂ catalysts.

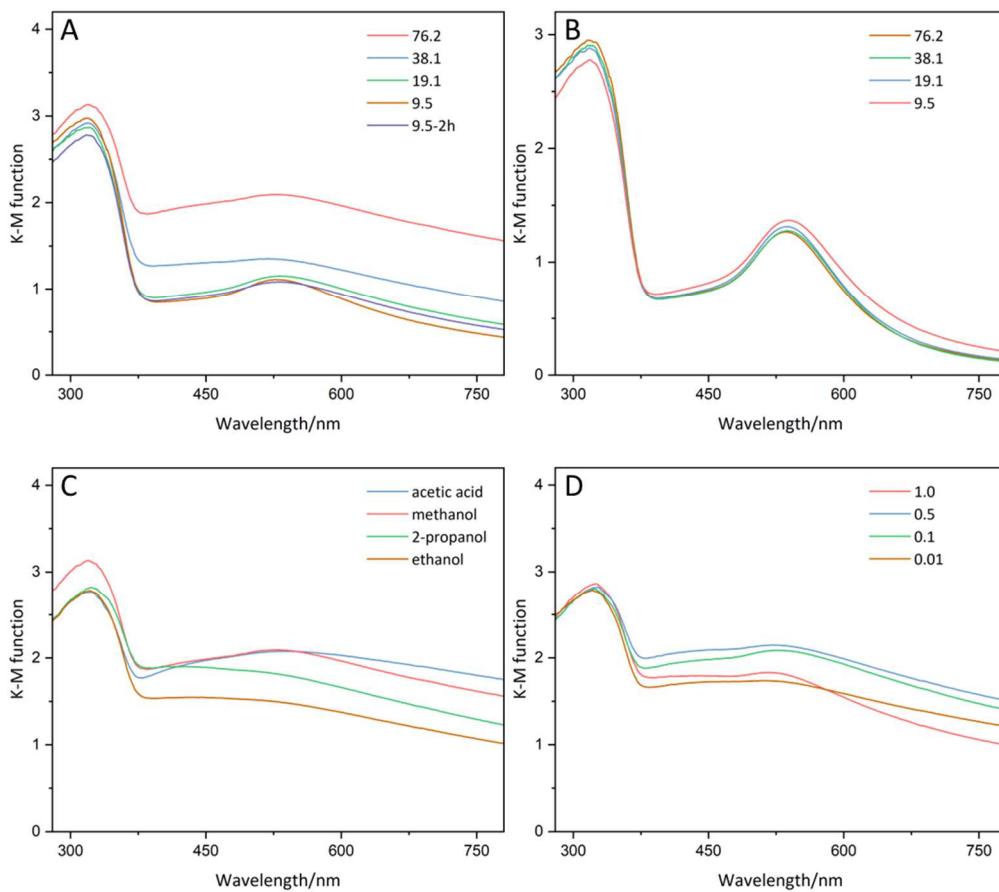


Fig. S10 DR UV-vis spectra of various samples, (A) Au1@Pd2/TiO_2 prepared under series PD light intensity, (B) Au1/TiO_2 prepared under series PD light intensity, (C) Au1@Pd2/TiO_2 prepared using various PD sacrificial reagent, and (D) Au1@Pd2/Ptx/TiO_2 , $x=1.0$, 0.5 , 0.1 , and 0.01 wt%.

References

S1 H. Huang, A. Yamamoto, R. Sugiyama, A. Tanaka, H. Kominami and H. Yoshida, *Catal Today*, 2026, **461**, 115520.