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In this supporting information, we mathematically prove that the number of yield oscillations
is at most

⌊
n
2

⌋
for a reaction path network with n equilibrium states, and we construct a network

that achieves this upper bound.

1 Preliminalies

This section establishes the fundamental concepts of chemical reaction networks and auxiliary lem-
mas used throughout this supporting information.

We first introduce some basic notation. For a positive integer k, let [k] = {1, 2, . . . , k}. For a

matrix A ∈ Rn×n, the matrix exponential is defined as eA =
∑∞

d=0
Ad

d! . For a real number x ∈ R,
the floor function ⌊x⌋ denotes the largest integer less than or equal to x.

We consider networks of chemical reactions [5, 6]. For each equilibrium state i, let Ei denote
its potential energy. For states i and j that can transition between each other, let Ei−j(= Ej−i)
denote the potential energy of their transition state. The rate constant Kij from state j to state i
is given by

Kij = Γ
kBT

h
exp

(
−Ei−j − Ej

RT

)
,

where kB is the Boltzmann constant, h is the Planck constant, R is the gas constant, T is the
temperature, and Γ is the transmission coefficient.

We represent a chemical reaction network with n equilibrium states as a weighted undirected
graph G = (V,E,wV , wE) with vertex set V = [n] and edge set E. Each vertex i ∈ V corresponds to
an equilibrium state, and each edge {i, j} ∈ E represents a possible transition between states i and
j. The weight functions wV : V → R>0 and wE : E → R>0 are defined by wV (i) = exp(−Ei/RT )
and wE(i, j) = ΓkBT

h exp(−Ei−j/RT ), respectively. For this weighted graph, the graph Laplacian
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matrix L = (Lij)ij is defined as

Lij =


∑

k:{i,k}∈E wE(i, k) if i = j;

−wE(i, j) if {i, j} ∈ E;

0 if i ̸= j and {i, j} /∈ E.

Let π = (π1, π2, . . . , πn) be the normalized weighted degree vector, where

πi =
wV (i)∑n
j=1wV (j)

.

Let Π = diag(π) be the corresponding diagonal matrix. The transition dynamics of the chemical
reaction network are described by the rate constant matrix K = −LΠ−1 [6].

For any i, j ∈ V , we define the function fij(t) to represent the quantity in state i at time t when
the system initially occupies state j at time t = 0. Then fij(t) is given by the (i, j) entry of the
matrix exponential etK :

fij(t) = (etK)i,j = e
⊤
i e

tKej ,

where ei denotes the standard basis vector whose ith entry is 1 and all other entries are 0.
To investigate the oscillatory behavior of fij(t), we define the following notion of extremal times.

Definition 1 (Extremal times). Fix arbitrary i, j ∈ V . A time t ∈ [0,∞] is an extremal maximum
(respectively, extremal minimum) of fij(t) if:

• When t < ∞, there exists δ > 0 such that fij(s) < fij(t) (respectively, fij(s) > fij(t)) for all
s ∈ (t− δ, t+ δ) with s ̸= t.

• When t = ∞, there exists T ≥ 0 such that fij is monotonically increasing (respectively,
decreasing) on [T,∞).

1.1 Auxiliary Lemmas

In this section, we establish several lemmas that will be essential to our analysis.
Let 1 and 0 denote the all-ones and all-zeros vectors of appropriate dimension. For a vector

v = (vi)i ∈ Rn, we define the ℓ1-norm as ∥v∥1 =
∑n

i=1 |vi|. For a matrix A = (Ai,j)i,j ∈ Rn×n,
its ℓ1-norm is defined as ∥A∥1 = max1≤j≤n

∑n
i=1 |Ai,j |. It is well-known that for any matrix A and

vector v, the inequality ∥Av∥1 ≤ ∥A∥1 · ∥v∥1 holds.
We now describe a lemma which bounds the number of zeros of exponential polynomials.

Lemma 1 (Descartes’ rule of signs (cf. [7, 8]). For a non-zero exponential polynomial f(t) =∑n
i=1 aie

bit with arbitrary real coefficients ai and bi, the number of finite real zeros (i.e., real numbers
t with |t| < ∞ satisfying f(t) = 0) is at most n− 1.

The following lemma provides an integral representation for the difference of matrix exponentials
and will be used throughout this supporting information.

Lemma 2 (Duhamel’s formula [2]). For any two matrices A,B ∈ Rn×n and all t ≥ 0,

etA − etB =

∫ t

0
e(t−s)B(A−B)esAds.

For completeness, we provide a proof of this lemma.
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Proof. For s ∈ [0, t], let F (s) = e(t−s)BesA. We have F (0) = etB and F (t) = etA. Then, we have
dF (s)
ds = −Be(t−s)BesA+e(t−s)BAesA = e(t−s)B(A−B)esA. By the fundamental theorem of calculus,

we obtain
∫ t
0

dF (s)
ds ds =

∫ t
0 e

(t−s)B(A − B)esAds = F (t) − F (0) = etA − etB. This completes the
proof.

We now define Metzler matrices [3] and their nonexpansiveness.

Definition 2 (Nonexpansive Metzler matrices). A matrix A ∈ Rn×n is said to be Metzler if Ai,j ≥ 0
for all i ̸= j. A Metzler matrix A ∈ Rn×n is called nonexpansive if 1⊤A ≤ 0⊤.

We now bound matrix exponentials of nonexpansive Metzler matrices.

Lemma 3 (Property of nonexpansive Metzler matrices). Let A ∈ Rn×n be a nonexpansive Metzler
matrix. Then, for every t ≥ 0, the matrix exponential etA satisfies ∥etA∥1 ≤ 1.

Proof. For a Metzler matrix A with 1⊤A ≤ 0⊤, we define y(t) = 1⊤etA. Then y(t) satisfies the

differential equation dy(t)
dt = y(t)A with initial condition y(0) = 1⊤.

We first show that y(t) ≤ 1⊤ for all t ≥ 0. Suppose, for contradiction, that yi(t) > 1 for
some i and t > 0. By continuity, there exists t0 > 0 such that maxj∈[n] yj(t0) = yi(t0) = 1 and
dyi
dt (t0) > 0. Now, we have dyi

dt (t0) = (y(t0)A)i =
∑n

j=1 yj(t0)Aj,i. Since A is Metzler, Ai,j ≥ 0 for

i ̸= j. Moreover, yj(t0) ≤ yi(t0) = 1 for all j. Therefore, dyi
dt (t0) ≤

∑n
j=1Aj,i = (1⊤A)i ≤ 0. This

contradicts dyi
dt (t0) > 0. Hence, y(t) ≤ 1⊤ for all t ≥ 0.

Since A is Metzler, etA is nonnegative for all t ≥ 0. Thus, the ℓ1-norm equals ∥etA∥1 =
maxj

∑
i(e

tA)i,j = maxj∈[n](y(t))j ≤ 1.

Combining Lemmas 2 and 3, we obtain the following bound.

Lemma 4 (Duhamel’s bound for nonexpansive Metzler matrices). For any two nonexpansive Met-
zler matrices A,B ∈ Rn×n and all t ≥ 0,

∥etA − etB∥1 ≤ t ∥A−B∥1.

Proof. By Lemmas 2 and 3, we have

∥etA − etB∥1 =
∥∥∥∥∫ t

0
e(t−s)B(A−B)esAds

∥∥∥∥
1

≤
∫ t

0
∥e(t−s)B(A−B)esA∥1 ds

≤
∫ t

0
∥e(t−s)B∥1 ∥A−B∥1 ∥esA∥1 ds

≤
∫ t

0
∥A−B∥1 ds = t ∥A−B∥1,

where in the third inequality we used ∥e(t−s)B∥1 ≤ 1 and ∥esA∥1 ≤ 1. This completes the proof of
the lemma.

We now analyze the structure of matrix exponentials for block matrices with zero upper-right
block.

Lemma 5. Let A ∈ Rn×n be a matrix of the form

A =

(
a 0⊤

b B

)
,
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where a ∈ R>0 is a scalar, b ∈ Rn−1 is a column vector, and B ∈ R(n−1)×(n−1) is a submatrix.
Then, for any t ∈ R≥0, the matrix exponential etA is given by

etA =

(
eta 0⊤

ψ(t) etB

)
, (1)

where ψ(t) =
∫ t
0 e

sae(t−s)Bb ds. Furthermore, in the special case where B = O, we have ψ(t) =
eta−1

a b.

Proof. Given the block structure of A, we can prove by induction that powers of A take the form:

Ad =

(
ad 0⊤

ϕd Bd

)
,

where ϕd satisfies that ϕ1 = b, and for d ≥ 2, ϕd = aϕd−1 +Bϕd−1. Thus, we obtain

etA =
∞∑
d=0

td

d!

(
ad 0⊤

ϕd Bd

)
=

(∑∞
d=0

(ta)d

d! 0⊤∑∞
d=0

td

d!ϕd
∑∞

d=0
(tB)d

d!

)
=

(
eta 0⊤

ψ(t) etB

)
,

where ψ(t) =
∑∞

d=0
td

d!ϕd.

To determine the explicit expression for ψ(t), we utilize the fundamental property that d
dte

tA =
AetA. Applying this to the equation (1) and focusing on the bottom-left block, we get

dψ(t)

dt
= etab+Bψ(t). (2)

Additionally, we have the initial condition ψ(0) = 0.
We claim that ψ(t) =

∫ t
0 e

sae(t−s)Bb ds satisfies both the differential equation (2) and the initial
condition. For the initial condition, this is immediate. For the equation (2), applying Leibniz’s
integral rule yields the required result as follows.

dψ(t)

dt
=

d

dt

∫ t

0
esae(t−s)Bb ds = etae0Bb+

∫ t

0
esa

∂

∂t
[e(t−s)B]b ds

= etab+

∫ t

0
esa[Be(t−s)B]b ds = etab+B

∫ t

0
esae(t−s)Bb ds

= etab+Bψ(t).

By the uniqueness theorem for linear differential equations, this establishes the explicit form of
ψ(t).

For the special case where B = O, we have e(t−s)B = eO = I, which directly leads to ψ(t) =∫ t
0 e

sa ds · b = eta−1
a b. This completes the proof.

Finally, we present two useful results on spectral properties of symmetric matrices and graph
Laplacians.

Lemma 6 (Courant-Fischer theorem (cf. [4])). Let A be a real symmetric matrix satisfying A1 = 0.
Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A in non-increasing order. If λ1 = 0 (i.e., 0 is the

largest eigenvalue of A), then the second largest eigenvalue is given by maxx̸=0,x⊥1
x⊤Ax
x⊤x

.

Lemma 7 (Eigenvalues on a path graph (cf. [1])). Consider a path graph with n vertices, where all
edges have weight 1. Let L be its graph Laplacian matrix. Then, the second smallest eigenvalue λ2

of L is given by

λ2 = max
x̸=0,x⊥1

−
∑n−1

i=1 (xi+1 − xi)
2∑n

i=1 x
2
i

= 2 cos
(π
n

)
− 2.
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2 Finiteness of Extremal Maximum Times

In this section, we prove that the number of extremal maximum times is at most
⌊
n
2

⌋
.

Theorem 1. For any i, j ∈ [n], the number of extremal maximal times of fij(t) is at most
⌊
n
2

⌋
.

To prove Theorem 1, we show the following lemma.

Lemma 8. Suppose that for any i, j ∈ [n],
dfij
dt (t) is not identically zero. Then, the equation

dfij
dt (t) = 0 has at most n− 2 solutions in the interval [0,∞), and one additional solution at t = ∞.

Proof. Since K is self-adjoint, all eigenvalues of K are real [6]. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the
eigenvalues of K. Since Kπ = 0, K has an eigenvalue 0. Moreover, it follows from the Gershgorin
circle theorem that 0 = λ1 ≥ λ2 ≥ · · · ≥ λn [6]. Let uk be an eigenvector corresponding to λk for
k ∈ [n]. Let U = (u1,u2, . . . ,un) and Λ = diag(λ1, λ2, . . . , λn). Using the eigendecomposition of K
and the properties of the matrix exponential, we can express fij(t) as

fij(t) = e
⊤
i e

tKej = e
⊤
i UetΛU−1ej =

n∑
k=1

e⊤i uk(U
−1)kej · etλk

= (u1)i(U
−1)1,j +

n∑
k=2

(uk)i(U
−1)k,j · etλk ,

where (uk)i is the ith component of uk, and (U−1)k,j is the (k, j) entry of U−1. Therefore, we
obtain

dfij
dt

(t) =
n∑

k=2

(uk)i(U
−1)k,jλk · etλk .

By Lemma 1, the equation
dfij(t)

dt = 0 has at most n−2 finite real solutions. Moreover, since λk ≤ 0

for all k, we have limt→∞
dfij(t)

dt = 0.

Lemma 8 immediately yields Theorem 1 as follows.

Proof of Theorem 1. By the continuity of fij(t), between any two extremal maximum times, there
exists at least one extremal minimum time. Thus, if there are k extremal maximum times, there
must be at least k−1 extremal minimum time. By Lemma 8, the total number of extremal maximum
times in [0,∞] is at most n− 1. Thus, we have k + (k − 1) ≤ n− 1, which implies k ≤

⌊
n
2

⌋
.

3 Tightness of the Upper Bound

In this section, we present the following result.

Theorem 2. There exists a reaction path network that possesses exactly
⌊
n
2

⌋
extremal maximum

times.

To establish Theorem 2, we explicitly construct a network and demonstrate that it exhibits
precisely the claimed number of extremal maximum times.
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EQ1

EQ2 EQ3 EQ4 EQ5 EQ6 EQ7 EQ8 · · · EQn

c−1 c−2 c−3 c−4 c−5 c−6 c−n+2

c−2n c−2n c−2n c−2n c−2n

Figure 1: Graph with connections from EQ1 to even-numbered nodes. In the figure, we consider
the case where n is even.

3.1 Network Description

We consider a weighted graph G = (V,E,wV , wE) with n vertices, where V = [n] and n ≥ 2. The
vertices are labeled as EQ1, EQ2, . . . , EQn, illustrated in Figure 1. The edge set E is designed with
a specific structure consisting of two types of connections. First, there is a path connecting vertices
EQ2, EQ3, . . . , EQn in sequence. Second, there are additional edges connecting vertex EQ1 to all
vertices EQj where j is even and 2 ≤ j ≤ n.

Let c > 1 be a positive constant satisfying c > 2500n9. We now define the weight functions wV

and wE . The vertex weight function wV : V → R>0 assigns a very small weight to vertex 1 and the
same weight to all other vertices. Specifically,

wV (i) =

{
1

c2n(n−1)+1
if i = 1;

c2n

c2n(n−1)+1
if i = 2, 3, . . . , n.

The edge weight function wE : E → R>0 is defined according to the connection type:

wE(i, j) =

{
c−2n, if i = 1 and j is even;

c−(i−1), if i, j ∈ {2, 3, . . . , n} and |i− j| = 1, where i < j.

We first define Kpath ∈ R(n−1)×(n−1) as the graph Laplacian matrix for the path connecting
vertices 2, 3, . . . , n. This matrix has off-diagonal entries (Kpath)i,i+1 = (Kpath)i+1,i = c−i for con-
secutive vertices along the path, and diagonal entries chosen to ensure each row sums to zero.
Specifically, the diagonal entries are −c−1 for the first vertex, −c−n+2 for the last vertex, and
−c−i+1 − c−i for interior vertices, with all other entries being zero. The explicit form of Kpath is

Kpath =



−c−1 c−1 0 · · · 0 0
c−1 −c−1 − c−2 c−2 · · · 0 0
0 c−2 −c−2 − c−3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −c−n+3 − c−n+2 c−n+2

0 0 0 · · · c−n+2 −c−n+2


.
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For the weighted graph G = (V,E,wV , wE), the graph Laplacian matrix L ∈ Rn×n is written as

L =

(
⌊n−1

2 ⌋c−2n −c−2n 1⊤odd
−c−2n 1odd −Kpath + c−2n diag(1odd)

)
,

where 1odd is the (n− 1)-dimensional vector where ith entry equals 1 if i is odd and 0 if i is even.
The vertex weight function wV defines the equilibrium distribution vector π as

π =

(
1

c2n(n− 1) + 1
,

c2n

c2n(n− 1) + 1
,

c2n

c2n(n− 1) + 1
, . . . ,

c2n

c2n(n− 1) + 1

)⊤
.

Finally, the rate constant matrix is given by K = −LΠ−1, where Π = diag(π).

3.2 Proof of Theorem 2

We define f(t) = e⊤2 e
tKe1, which represents the quantity in equilibrium state EQ2 at time t when

the system initially occupies equilibrium state EQ1. To prove Theorem 2, we analyze the oscillatory
behavior of f(t).

The following lemma is crucial for our analysis. To state it, we define q = 1
⌈n−1

2
⌉bodd ∈ Rn−1

and, for each ℓ ∈ [n − 1], we define 1[1:ℓ] ∈ Rn−1 as the vector whose first ℓ components are 1 and
remaining components are 0.

Lemma 9. For each ℓ ∈ [n− 1], let tℓ = cℓ−1/2. Then, for all ℓ ∈ [n− 1], we have∣∣∣∣f(tℓ)− 1

ℓ
1⊤[1:ℓ]q

∣∣∣∣ ≤ 24nc−1/2. (3)

We defer the proof of Lemma 9 to Section 3.3. We now proceed to show Theorem 2.

Proof of Theorem 2. We show that f(t) has exactly
⌊
n
2

⌋
extremal maximum times. Our approach

is to establish an oscillatory pattern in f(t) by analyzing its values at the time points tℓ = cℓ−1/2

for ℓ ∈ [n− 1]. Note that f(0) = e⊤2 e1 = 0.
First, when ℓ is even, that is, ℓ = 2k for k = 1, 2, . . . , ⌊n−1

2 ⌋, using Lemma 9, we obtain

f(t2k) = e
⊤
2 e

t2kKe1 ≤
1

2k
1⊤[1:2k]q + 24nc−1/2 =

1

2⌈n−1
2 ⌉

+ 24nc−1/2.

Next, when ℓ is odd, that is, ℓ = 2k + 1 for k = 0, 1, . . . , ⌊n−2
2 ⌋, by Lemma 9, we have

f(t2k+1) = e
⊤
2 e

t2k+1Ke1 ≥
1

2k + 1
1⊤[1:2k+1]q − 24nc−1/2 =

k + 1

⌈n−1
2 ⌉(2k + 1)

− 24nc−1/2

=
1

2⌈n−1
2 ⌉

+
1

2⌈n−1
2 ⌉

· 1

2k + 1
− 24nc−1/2.

Since c > 2500n9 and n ≥ 2, we have 24nc−1/2 < 48nc−1/2 < 48n
50n4.5 < 1

n2 < 1
n . Since f(0) = 0,

we get

f(t1) ≥
1

⌈n−1
2 ⌉

− 24nc−1/2 >
1

n
− 24nc−1/2 > 0 = f(0). (4)

Moreover, for each k = 0, 1, . . . , ⌊n−3
2 ⌋, we have

f(t2k+1)− f(t2k+2) ≥
1

2⌈n−1
2 ⌉

1

2k + 1
− 48nc−1/2 ≥ 1

n2
− 48nc−1/2 > 0. (5)
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t1 t2 t3 t4 tn−3 tn−2 tn−10 t

f(t)

Figure 2: Example of the oscillation pattern of f(t) when n is even.

For each k = 1, 2, . . . , ⌊n−2
2 ⌋, we obtain

f(t2k+1)− f(t2k) ≥
1

2⌈n−1
2 ⌉

1

2k + 1
− 48nc−1/2 > 0. (6)

By continuity of f and the inequalities (5) and (6), there exists at least one extremal maximum
time in each interval [t2k, t2k+2] for k = 1, 2, . . . , ⌊n−3

2 ⌋. Moreover, from the inequalities (4) and (5),
there exists at least one extremal maximum time in [0, t2]. These imply that at least ⌊n−3

2 ⌋ + 1

extremal maximum times exist in
[
0, t2⌊n−3

2
⌋+2

]
.

Additionally, when n is even, the inequality (6) with k = n−2
2 gives f(tn−1) > f(tn−2). If f

increases monotonically and converges, then t = ∞ becomes an extremal maximum time; otherwise,
f decreases at some time in (tn−1,∞) and there exists at least one finite extremal maximum time.
Thus, there exists at least one extremal maximum time in (tn−1,∞]. Figure 2 illustrates these
arguments for the case when n is even.

Combining these results, when n is odd, the total number of extremal maximum times is at least
⌊n−3

2 ⌋+ 1 = ⌊n2 ⌋, while when n is even, there are at least ⌊n−3
2 ⌋+ 1 + 1 = ⌊n2 ⌋ extremal maximum

times. Therefore, f(t) has at least ⌊n2 ⌋ extremal maximum times in [0,∞].
By Theorem 1, which establishes that the number of extremal maximum times is at most ⌊n2 ⌋,

we conclude that the constructed network achieves exactly ⌊n2 ⌋ extremal maximum times.

3.3 Proof of Lemma 9

We prove Lemma 9 by carefully analyzing the structure of the rate matrix K and its spectral
properties.

3.3.1 Additional Notations

To analyze the dynamics, we introduce several auxiliary matrices We set t0 = c1/4 as our reference
time. Note that for any ℓ ∈ [n− 1], we have tℓ − t0 = cℓ−1/2 − c1/4 ≥ 0.

We decompose the rate matrix K in two complementary ways to isolate the effects of different
network components. In our first decomposition, we write K = K1 + (K −K1), where K1 captures
the interaction between the first node and the path component:

K1 = −

(
⌊n−1

2 ⌋c−2n 0⊤

−c−2n 1odd O

)
Π−1 =

c2n(n− 1) + 1

c2n

(
−⌊n−1

2 ⌋ 0⊤

1odd O

)
.
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In our second decomposition, we write K = K2 + (K −K2), where K2 includes the path dynamics:

K2 =
c2n(n− 1) + 1

c2n

(
−⌊n−1

2 ⌋ 0⊤

1odd Kpath

)
.

For each ℓ ∈ [n], let (Kpath
i,j )1≤i,j≤ℓ denote the upper-left ℓ× ℓ principal submatrix of Kpath. For

ℓ ∈ [n − 2], we define the perturbation matrix Eℓ = diag(0, 0, . . . , 0, 1) ∈ Rℓ×ℓ and the perturbed
path matrix

Bℓ = (Kpath
i,j )1≤i,j≤ℓ + c−ℓEℓ.

Additionally, we set Bn−1 = Kpath. Finally, for each ℓ ∈ [n − 1], we define the embedding of Bℓ

into the full (n− 1)× (n− 1) spcace as

Aℓ =

(
Bℓ O
O O

)
∈ R(n−1)×(n−1).

3.3.2 Proof Sketch of Lemma 9

First, we outline the proof strategy. We will decompose the expression for f(tℓ) into several com-
ponents and analyze each one separately. The key approximation steps will be as follows:

f(tℓ) = e
⊤
2 e

tℓKe1

= e⊤2 e
(tℓ−t0)Ket0Ke1

≈ e⊤2 e(tℓ−t0)Ket0K1e1 (Step 1)

≈ e⊤2 e(tℓ−t0)K(0, q)⊤ (Step 2)

≈ e⊤2 e(tℓ−t0)K2(0, q)⊤ (Step 3)

≈ e⊤1 e(tℓ−t0)(n−1)Kpath
q (Step 4)

≈ e⊤1 e(tℓ−t0)(n−1)Aℓq (Step 5)

≈ 1

ℓ
1⊤[1:ℓ]q, (Step 6)

where the symbol ≈ indicates that the absolute value of the difference between the terms on either
side is bounded by some constant (independent of c) multiplied by c−1/2.

We will establish bounds for each approximation step and then combine them to obtain the final
result.

Step 1: Approximating et0K by et0K1

First, we have

∥K −K1∥1 = max
1≤j≤n

n∑
i=1

|(K1)i,j | ≤
c2n(n− 1) + 1

c2n
(2c−1 + c−3n) ≤ 4nc−1.

By Lemma 4, we get

∥et0K − et0K1∥1 ≤ t0 ∥K −K1∥1 ≤ 4nc1/4c−1 ≤ 4nc−1/2.

Therefore, by Lemma 3, we obtain

∥e⊤2 e(tℓ−t0)Ket0Ke1 − e⊤2 e(tℓ−t0)Ket0K1e1∥1 ≤ ∥e⊤2 e(tℓ−t0)K∥1 · ∥et0K − et0K1∥1 · ∥e1∥1
≤ 4nc−1/2. (7)
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Step 2: Approximating et0K1e1 by (0, q)⊤

By Lemma 5, we obtain

et0K1 =

 e−t0
c2n(n−1)+1

c2n
⌊n−1

2
⌋ 0⊤

e
−t0

c2n(n−1)+1

c2n
⌊n−1

2 ⌋−1
−⌊n−1

2
⌋ 1odd O

 ,

and

et0K1e1 =

e−t0
c2n(n−1)+1

c2n
⌊n−1

2
⌋,
e−t0

c2n(n−1)+1

c2n
⌊n−1

2
⌋ − 1

−⌊n−1
2 ⌋

1⊤odd

⊤

.

Therefore, we have ∥∥∥et0K1e1 − (0, q)⊤
∥∥∥
1
≤ 2e−t0

c2n(n−1)+1

c2n
⌊n−1

2
⌋

= 2e−c1/4
c2n(n−1)+1

c2n
⌊n−1

2
⌋ (by t0 = c1/4)

≤ 2e−c1/4

≤ 2c−1/2. (by c ≥ 1)

From this, we get∥∥∥e⊤2 e(tℓ−t0)Ket0K1e1 − e⊤2 e(tℓ−t0)K(0, q⊤)⊤
∥∥∥
1
≤
∥∥∥e⊤2 e(tℓ−t0)K

∥∥∥
1
·
∥∥∥et0K1e1 − (0, q⊤)⊤

∥∥∥
1

≤ 2c−1/2

≤ 2nc−1/2. (8)

Step 3: Approximating e(tℓ−t0)K by e(tℓ−t0)K2

Since we have

K −K2 =
c2n(n− 1) + 1

c2n

(
0 c−2n 1⊤odd
0 −c−2n diag(1odd)

)
,

we can bound the norm of the difference between K and K2:

∥K −K2∥1 ≤ 4 · c−2n.

By Lemma 4, we obtain∥∥∥e⊤2 e(tℓ−t0)K(0, q⊤)⊤ − e⊤2 e(tℓ−t0)K2(0, q⊤)⊤
∥∥∥
1
≤ ∥e(tℓ−t0)K − e(tℓ−t0)K2∥1

≤ (tℓ − t0)∥K −K2∥1
≤ cℓ−1/2 · 4 · c−2n

≤ cn · 4 · c−2n

≤ 4c−n

≤ 4nc−1/2. (9)
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Step 4: Approximating e⊤2 e
(tℓ−t0)K2(0, q⊤)⊤ by e⊤1 e

(tℓ−t0)(n−1)Kpath
q

By Lemma 5, we have

e(tℓ−t0)K2 =

e−(tℓ−t0)
c2n(n−1)+1

c2n
⌊n−1

2
⌋ 0⊤

∗ e(tℓ−t0)
c2n(n−1)+1

c2n
Kpath

 ,

where ∗ denotes an appropriate vector. Thus, we get

e⊤2 e
(tℓ−t0)K2(0, q⊤)⊤ = e⊤1 e

(tℓ−t0)
c2n(n−1)+1

c2n
Kpath

q.

Since c2n(n−1)+1
c2n

Kpath and (n− 1)Kpath are both nonexpansive Metzler matrices, we have

∥e(tℓ−t0)
c2n(n−1)+1

c2n
Kpath

− e(tℓ−t0)(n−1)Kpath∥1 ≤ (tℓ − t0)∥c−2nKpath∥1 ≤ 4c−n.

Finally, we obtain∣∣∣e⊤2 e(tℓ−t0)K2(0, q⊤)⊤ − e⊤1 e(tℓ−t0)(n−1)Kpath
q
∣∣∣ ≤ 4c−n ≤ 4nc−1/2. (10)

Step 5: Approximating e(tℓ−t0)(n−1)Kpath
by e(tℓ−t0)(n−1)Aℓ

By construction, it is straightforward to verify that for all ℓ ∈ [n− 1],

∥Kpath −Aℓ∥1 = 2c−ℓ + 2c−(ℓ+1) ≤ 4c−ℓ.

Since Kpath and Aℓ are nonexpansive Metzler matrices, by Lemma 4, we obtain∥∥∥e⊤1 e(tℓ−t0)(n−1)Kpath
q − e⊤1 e(tℓ−t0)(n−1)Aℓq

∥∥∥
1
≤ ∥e⊤1 ∥1 · ∥e(tℓ−t0)(n−1)Kpath − e(tℓ−t0)(n−1)Aℓ∥1 · ∥q∥1

≤ ∥e(tℓ−t0)Kpath − e(tℓ−t0)Aℓ∥1
≤ (tℓ − t0)(n− 1)∥Kpath −Aℓ∥1
≤ 4(tℓ − t0)(n− 1)c−ℓ

≤ 4tℓnc
−ℓ

= 4ncℓ−1/2c−ℓ

= 4nc−1/2. (11)

Step 6: Approximating e⊤1 e
(tℓ−t0)(n−1)Aℓ by 1

ℓ1
⊤
ℓ

We consider the eigenvalues of the matrix Bℓ. Note that Bℓ is symmetric. Let λ1 ≥ λ2 ≥ · · · ≥ λℓ

be eigenvalues, and let v1,v2, . . . ,vℓ be orthonormal eigenvectors. Note that λ1 = 0 and v1 = 1.
By Lemma 6, we have

λ2 = max
x̸=0,x⊥1

x⊤Bℓx

x⊤x

= max
x̸=0,x⊥1

−
∑ℓ−1

i=1 c
−i(xi+1 − xi)

2∑ℓ
i=1 x

2
i
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≤ c−ℓ+1 max
x̸=0,x⊥1

−
∑ℓ−1

i=1(xi+1 − xi)
2∑ℓ

i=1 x
2
i

= c−ℓ+1 ·
(
2 cos

(π
ℓ

)
− 2
)

(by Lemma 7)

≤ −π2

ℓ2
c−ℓ+1. (by the inequality cosx ≥ 1− x2

2 for any x ≥ 0)

By the spectral decomposition Bℓ =
∑ℓ

k=1 λkvkv
⊤
k , we obtain

e(tℓ−t0)(n−1)Bℓe1 =
1

ℓ
1+

ℓ∑
k=2

e(tℓ−t0)(n−1)λkvkv
⊤
k e1.

This implies that∥∥∥∥e(tℓ−t0)(n−1)Bℓe1 −
1

ℓ
1

∥∥∥∥
1

≤
ℓ+1∑
k=2

e(tℓ−t0)(n−1)λk · |v⊤k e1| · ∥vk∥1

≤
ℓ+1∑
k=2

e(tℓ−t0)(n−1)λk (by |v⊤k e1| ≤ 1 and ∥vk∥1 ≤ 1)

≤ n exp ((tℓ − t0)(n− 1)λ2)

≤ n exp ((tℓ − t0)λ2)

≤ n exp

(
−(tℓ − t0)

π2

n2
c−ℓ+1

)
≤ n exp

(
−(cℓ−1/2 − c1/4)

π2

n2
c−ℓ+1

)
≤ n exp

(
−cℓ−3/4π

2

n2
c−ℓ+1

)
≤ ne−

π2

n2 c
1/4

.

Since c > n9, we obtain∣∣∣∣e⊤1 e(tℓ−t0)(n−1)Aℓq − 1

ℓ
1⊤[1:ℓ]q

∣∣∣∣ ≤ ∥∥∥∥e⊤1 e(tℓ−t0)(n−1)Aℓ − 1

ℓ
1⊤[1:ℓ]

∥∥∥∥
1

=

∥∥∥∥e⊤1 e(tℓ−t0)(n−1)Bℓ − 1

ℓ
1⊤
∥∥∥∥
1

≤ ne−
π2

n2 c
1/4

≤ nc−1/2. (12)

Combining the Bounds

Summing up the inequalities (7), (8), (9), (10), (11), and (12) together with the triangle inequality,
we obtain the inequality (3), completing the proof of Lemma 9.
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