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In this supporting information, we mathematically prove that the number of yield oscillations
is at most L%J for a reaction path network with n equilibrium states, and we construct a network
that achieves this upper bound.

1 Preliminalies

This section establishes the fundamental concepts of chemical reaction networks and auxiliary lem-
mas used throughout this supporting information.

We first introduce some basic notation. For a positive integer k, let [k] = {1,2,...,k}. For a
matrix A € R™ ™, the matrix exponential is defined as e = >0 ‘3—7. For a real number z € R,
the floor function |x| denotes the largest integer less than or equal to x.

We consider networks of chemical reactions [5, 6]. For each equilibrium state 4, let E; denote
its potential energy. For states i and j that can transition between each other, let E;_j(= E;_;)

denote the potential energy of their transition state. The rate constant K;; from state j to state ¢

is given by - . .
Kij = Fijz exp <—Z]j_-i; J) )

where kp is the Boltzmann constant, h is the Planck constant, R is the gas constant, T is the
temperature, and I' is the transmission coefficient.

We represent a chemical reaction network with n equilibrium states as a weighted undirected
graph G = (V, E, wy,wg) with vertex set V = [n] and edge set E. Each vertex i € V corresponds to
an equilibrium state, and each edge {7, j} € E represents a possible transition between states ¢ and
j. The weight functions wy : V' — Ry and wg : E — Ry are defined by wy (i) = exp(—FE;/RT)
and wg(i,j) = F% exp(—F;_;j/RT), respectively. For this weighted graph, the graph Laplacian
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matrix L = (Lj;);; is defined as

Ykfikrep We(h k) if i =7

Lij = { —wg(i, j) if {i,j} € E;
0 ifi #jand {i,j} ¢ E.
Let m = (m,m2,...,m,) be the normalized weighted degree vector, where
= ()

Z;‘L:I wy (§)

Let IT = diag(w) be the corresponding diagonal matrix. The transition dynamics of the chemical
reaction network are described by the rate constant matrix K = —LIT~! [6].

For any i,j € V, we define the function f;;() to represent the quantity in state i at time ¢ when
the system initially occupies state j at time ¢ = 0. Then f;;(¢) is given by the (i, j) entry of the
matrix exponential e!X:

fii(t) = ()i = e e,
where e; denotes the standard basis vector whose ith entry is 1 and all other entries are 0.
To investigate the oscillatory behavior of f;;(t), we define the following notion of extremal times.

Definition 1 (Extremal times). Fix arbitrary ¢, € V. A time ¢ € [0, 00| is an extremal mazimum
(respectively, extremal minimum) of fi;(t) if:

e When ¢ < oo, there exists § > 0 such that f;;(s) < fi;(t) (vespectively, f;;j(s) > fi;(t)) for all
s€(t—19,t+9) with s #¢.

e When t = oo, there exists 7" > 0 such that f;; is monotonically increasing (respectively,
decreasing) on [T, 00).
1.1 Auxiliary Lemmas

In this section, we establish several lemmas that will be essential to our analysis.

Let 1 and O denote the all-ones and all-zeros vectors of appropriate dimension. For a vector
v = (v;); € R", we define the ¢1-norm as ||v||; = Y, |v;|. For a matrix A = (4;;);; € R™",
its ¢1-norm is defined as || Alj1 = maxi<j<n Y i |Aij|- It is well-known that for any matrix A and
vector v, the inequality ||Av||; < [|A]]1 - ||v]|; holds.

We now describe a lemma which bounds the number of zeros of exponential polynomials.

Lemma 1 (Descartes’ rule of signs (cf. [7, 8]). For a non-zero exponential polynomial f(t) =
Yoy a;e’t with arbitrary real coefficients a; and b;, the number of finite real zeros (i.e., real numbers
t with |t| < oo satisfying f(t) = 0) is at most n — 1.

The following lemma provides an integral representation for the difference of matrix exponentials
and will be used throughout this supporting information.

Lemma 2 (Duhamel’s formula [2]). For any two matrices A, B € R™ ™ and all t > 0,
t
etA o etB — / e(tfs)B(A - B)eSAds.
0
For completeness, we provide a proof of this lemma.
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Proof. For s € [0,], let F(s) = e=9)Bes4. We have F(0) = e!f and F(t) = e!4. Then, we have

dlg—gs) = —Belt=9)BesA 4 o(l=9)B fes4 = e(t=9)B(A — B)e®. By the fundamental theorem of calculus,
we obtain fg dlggs) ds = fg et=9)B(A — B)e®Ads = F(t) — F(0) = !4 — e'B. This completes the
proof. O

We now define Metzler matrices [3] and their nonexpansiveness.

Definition 2 (Nonexpansive Metzler matrices). A matrix A € R"*" is said to be Metzler if A; ; > 0
for all i # j. A Metzler matrix A € R™ " is called nonexpansive if 1TA <07,

We now bound matrix exponentials of nonexpansive Metzler matrices.

Lemma 3 (Property of nonexpansive Metzler matrices). Let A € R™™ be a nonexpansive Metzler
matriz. Then, for every t > 0, the matriz exponential e satisfies ||e!4|; < 1.

Proof. For a Metzler matrix A with 1TA < 07, we define y(t) = 17e’A. Then y(t) satisfies the
differential equation dyd—gt) = y(t)A with initial condition y(0) = 1T.

We first show that y(t) < 1T for all ¢ > 0. Suppose, for contradiction, that y;(t) > 1 for
some i and ¢ > 0. By continuity, there exists to > 0 such that max;c, y;(to) = %i(to) = 1 and

‘iﬁi (to) > 0. Now, we have (Lyti (to) = (y(to)A)i = >_7_1 yj(to)Ajs. Since A is Metzler, A4;; > 0 for

i # j. Moreover, y;(to) < yi(to) = 1 for all j. Therefore, %(to) <Y A= (1T A); < 0. This
contradicts (g’,’j (to) > 0. Hence, y(t) <17 for all ¢ > 0.
Since A is Metzler, e!4 is nonnegative for all ¢ > 0. Thus, the ¢;-norm equals |

max; Zi(etA)iJ = mane[n} (y(t))j < 1. OJ

Combining Lemmas 2 and 3, we obtain the following bound.

M =

Lemma 4 (Duhamel’s bound for nonexpansive Metzler matrices). For any two nonexpansive Met-
zler matrices A, B € R™*"™ and all t > 0,

let — Pl < t]| A~ B

Proof. By Lemmas 2 and 3, we have

t
HetA . etBH1 _ ‘ / e(t—s)B(A_B)esAdS

0

t
g/ e (4 — B)e*A|, ds

1 0
t

< /0 1B A = Blly [lc*A ] ds
t

é/ |A—Blds=t||A- B,

0

where in the third inequality we used ||e®=*)B||; <1 and ||e*4||; < 1. This completes the proof of
the lemma. O

We now analyze the structure of matrix exponentials for block matrices with zero upper-right
block.

Lemma 5. Let A € R™™ be a matriz of the form

A= ,
b B
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(n-1)

where a € Rsg is a scalar, b € R"! is a column vector, and B € R x(n=1) s a submatriz.

Then, for any t € R>q, the matriz exponential et is given by

ela T
= (¢<t> :fB> | W

where P(t) = fg es?e(t=3)Bbds. Furthermore, in the special case where B = O, we have 1(t) =
et —1
e,

Proof. Given the block structure of A, we can prove by induction that powers of A take the form:

Ad_ ad OT
~\¢pa B?)’

where ¢, satisfies that ¢p; = b, and for d > 2, ¢4 = adpg_1 + Bep4_1. Thus, we obtain

=3 ( OT> - (Z?o W ) - ( 0T>
= al = a| = tB |
d=0 d'\¢s B > o %de a0 (“5!) P(t) e

where (t) = > "7, fi—d!(bd.

To determine the explicit expression for ¥ (t), we utilize the fundamental property that %em =
Aet4. Applying this to the equation (1) and focusing on the bottom-left block, we get
dap(t
’gi) = ¢!*b + Bap(t). (2)

Additionally, we have the initial condition % (0) = 0.

We claim that (t) = fg e*%e(t=5)Bp ds satisfies both the differential equation (2) and the initial
condition. For the initial condition, this is immediate. For the equation (2), applying Leibniz’s
integral rule yields the required result as follows.

d¢(t) _ d /t sa (t—s)B _ . ta 0B /t saa (t—s)B
T Oe e bds =e"e’"b+ Oe 8t[e Jbds

t ¢
=e'"b + / e**[Be™*)Bbds = e'b + B/ e*%el=9)Bp s
0

0
= e'"b + By (t).
By the uniqueness theorem for linear differential equations, this establishes the explicit form of
P(t).
For the special case where B = O, we have e(=98 = ¢0 = [ which directly leads to 1 (t) =
fg e%ds-b= et%lb. This completes the proof. O

Finally, we present two useful results on spectral properties of symmetric matrices and graph
Laplacians.

Lemma 6 (Courant-Fischer theorem (cf. [4])). Let A be a real symmetric matriz satisfying A1 = 0.

Let Ay > Ao > -+ >\, be the eigenvalues of A in non-increasing order. If \y = 0 (i.e., 0 is the

x| Az

largest eigenvalue of A), then the second largest eigenvalue is given by maxz+o 411 g et

Lemma 7 (Eigenvalues on a path graph (cf. [1])). Consider a path graph with n vertices, where all
edges have weight 1. Let L be its graph Laplacian matriz. Then, the second smallest eigenvalue Ao
of L is given by

Nl )2
Ao = max izl (an+12 z) = 2cos <I) - 2.
x#0,x 11 Zi:l ZT; n
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2 Finiteness of Extremal Maximum Times

In this section, we prove that the number of extremal maximum times is at most L%J
Theorem 1. For any i,j € [n], the number of extremal mazimal times of f;;(t) is at most | %|.
To prove Theorem 1, we show the following lemma.

Lemma 8. Suppose that for any i,j € [n], d({;j (t) is mot identically zero. Then, the equation

%(t} = 0 has at most n — 2 solutions in the interval [0,00), and one additional solution at t = oo

Proof. Since K is self-adjoint, all eigenvalues of K are real [6]. Let \y > Ao > --- > )\, be the
eigenvalues of K. Since Km = 0, K has an eigenvalue 0. Moreover, it follows from the Gershgorin
circle theorem that 0 = Ay > Ay > --- > A\, [6]. Let uy be an eigenvector corresponding to Ay for
k€ [n]. Let U = (u1,u2,...,u,) and A = diag(A1, A2,..., \,). Using the eigendecomposition of K
and the properties of the matrix exponential, we can express f;;(t) as

fii(t) = ej eFe; = e] U U e, = Ze up(U™ e - et

= (iU )15+ Y (wr)i(U iy - e,
k=2

where (ug); is the ith component of wuy, and (U™')y; is the (k,j) entry of U~!. Therefore, we
obtain

dcﬁj () = ()i (U™ g s - e,

k=2

By Lemma 1, the equation dfs ” ®) — 0 has at most n — 2 finite real solutions. Moreover, since A\ <0

) _ 0

for all k, we have lim_,oc —§;

Lemma 8 immediately yields Theorem 1 as follows.

Proof of Theorem 1. By the continuity of f;;(t), between any two extremal maximum times, there
exists at least one extremal minimum time. Thus, if there are k extremal maximum times, there
must be at least k—1 extremal minimum time. By Lemma 8, the total number of extremal maximum
times in [0, 00] is at most n — 1. Thus, we have k + (k — 1) <n — 1, which implies k < |%]. O

3 Tightness of the Upper Bound

In this section, we present the following result.

Theorem 2. There exists a reaction path network that possesses exactly L%J extremal mazximum
times.

To establish Theorem 2, we explicitly construct a network and demonstrate that it exhibits
precisely the claimed number of extremal maximum times.
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Figure 1: Graph with connections from EQ1 to even-numbered nodes. In the figure, we consider
the case where n is even.

3.1 Network Description

We consider a weighted graph G = (V, E, wy,wg) with n vertices, where V = [n] and n > 2. The
vertices are labeled as EQ1, EQ2, ..., EQn, illustrated in Figure 1. The edge set E is designed with
a specific structure consisting of two types of connections. First, there is a path connecting vertices
EQ2, EQ3, ..., EQn in sequence. Second, there are additional edges connecting vertex EQ1 to all
vertices EQj where j is even and 2 < j < n.

Let ¢ > 1 be a positive constant satisfying ¢ > 2500n?. We now define the weight functions wy
and wg. The vertex weight function wy : V' — Ry assigns a very small weight to vertex 1 and the
same weight to all other vertices. Specifically,

if i = 1;

1
N ) c2r(n—1)+1

wy (1) = "
v (i) { c? ifi=2,3,...,n.

2 (n—1)+1

The edge weight function wg : E — R+ is defined according to the connection type:
o 0_2”, if i =1 and j is even;

wE(ZJ) = —(i=1)  if s s . . .

Y0 it i €{2,3,...,n} and |i — j| = 1, where i < j.

We first define KPath ¢ R(=1)x(n—1) a9 the graph Laplacian matrix for the path connecting
vertices 2,3,...,n. This matrix has off-diagonal entries (KP*!), ;.1 = (KPath), ; ; = ¢=% for con-
secutive vertices along the path, and diagonal entries chosen to ensure each row sums to zero.
Specifically, the diagonal entries are —c™! for the first vertex, —c~"*2 for the last vertex, and
—c"1 — ¢ for interior vertices, with all other entries being zero. The explicit form of KPah ig

—c! ¢! 0 0 0
el —el 2 2 0 0
-2 -2 3
Fepath _ 0 c —c “—c 0 0
0 0 0 _c—n+3 '_ C—n+2 6—7‘7,4-2
0 0 0 C—n+2 _C—n+2
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For the weighted graph G = (V, E, wy,wg), the graph Laplacian matrix L € R™"*™ is written as

I— ( |25t e2n e W )

o2y _Kpath + 72" diag(1o4q)

where 1,qq is the (n — 1)-dimensional vector where ith entry equals 1 if ¢ is odd and 0 if 7 is even.
The vertex weight function wy defines the equilibrium distribution vector 7 as

1 c2n c2n c2n T
= <02”(n—1)-1—1’02"(71—1)-1—1762"(71—1)—}—17”"02"(71—1)—}—1) ’

Finally, the rate constant matrix is given by K = —LII~!, where II = diag(n).

3.2 Proof of Theorem 2

We define f(t) = eTetK e1, which represents the quantity in equilibrium state EQ2 at time ¢ when
the system initially occupies equilibrium state EQ1. To prove Theorem 2, we analyze the oscillatory
behavior of f(t).

The following lemma is crucial for our analysis. To state it, we define g = [nT%l]bodd e R1

and, for each ¢ € [n — 1], we define 1. € R™ ! as the vector whose first £ components are 1 and
remaining components are 0.

Lemma 9. For each { € [n — 1], let t, = ¢!='/2. Then, for all £ € [n — 1], we have

< 24nc—1/2, (3)

1
‘f(te) ~ lga
We defer the proof of Lemma 9 to Section 3.3. We now proceed to show Theorem 2.

Proof of Theorem 2. We show that f(¢) has exactly L%J extremal maximum times. Our approach

is to establish an oscillatory pattern in f(t) by analyzing its values at the time points ¢, = t-1/2

for £ € [n — 1]. Note that f(0) = e e; = 0.

First, when ¢ is even, that is, £ = 2k for k =1,2,..., L%J, using Lemma 9, we obtain
1 _
fltar) = e e Fe; < le[l oK + 24nc 7 = =y + 24nc™ 2.

Next, when ¢ is odd, that is, £ =2k + 1 for k =0,1,..., LT2J by Lemma 9, we have

1 _ k+1 _
t T t2k+1K > 1T _24 1/2: _24 1/2
f( 2k+1) e € €1 =2 2k + 1 [1:2k+1}q nc |'nT—1'| (Qk + 1) nc
1 1 1
= — + — — 24nc1/?
2[n3] 2[5 2k 41
Since ¢ > 2500nY and n > 2, we have 24nc Y2 < 48nc¢ /2 <« 2 L < ~. Since f(0) =
50n n
we get
1 1
f(t) > =y -z - 24nc™12 > 0 = £(0). (4)
2
Moreover, for each k =0,1,..., L%?’J we have
1 1

ftors1) — fltars2) >

1
77_4 *1/2>7_4 *1/2 .
2"n21‘| o 1 8nc n2 8nc >0 (5)
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0 t1 to t3 t4 tn-3 th—2 tph-1 t

Figure 2: Example of the oscillation pattern of f(¢) when n is even.

For each k=1,2,..., L”Tfﬂ, we obtain

1 1

f(tary1) — ftor) > —=—=

— 48nc™ % > 0. 6
o2k +1 ¢ 7 (©)

By continuity of f and the inequalities (5) and (6), there exists at least one extremal maximum
time in each interval [toy, togto] for k =1,2,..., 252 ]|. Moreover, from the inequalities (4) and (5),

there exists at least one extremal maximum time in [0,to]. These imply that at least |%52] + 1
extremal maximum times exist in {0, tQLang [ +2}.

Additionally, when n is even, the inequality (6) with k = ”T_Q gives f(tn—1) > f(tn—2). If f
increases monotonically and converges, then ¢ = co becomes an extremal maximum time; otherwise,
f decreases at some time in (¢,—1,00) and there exists at least one finite extremal maximum time.
Thus, there exists at least one extremal maximum time in (¢,_1,00]. Figure 2 illustrates these
arguments for the case when n is even.

Combining these results, when n is odd, the total number of extremal maximum times is at least
|252] +1 = %], while when n is even, there are at least |%52| +1+ 1 = [%] extremal maximum
times. Therefore, f(t) has at least |5 | extremal maximum times in [0, oo].

By Theorem 1, which establishes that the number of extremal maximum times is at most 5],
we conclude that the constructed network achieves exactly |5 | extremal maximum times. O

3.3 Proof of Lemma 9

We prove Lemma 9 by carefully analyzing the structure of the rate matrix K and its spectral
properties.

3.3.1 Additional Notations

1/4 as our reference

To analyze the dynamics, we introduce several auxiliary matrices We set g = ¢
time. Note that for any ¢ € [n — 1], we have t, — tg = ¢/=1/2 — /4 > 0.

We decompose the rate matrix K in two complementary ways to isolate the effects of different
network components. In our first decomposition, we write K = K + (K — Kj), where K; captures

the interaction between the first node and the path component:

Ko (H °T> o € (—m oT),

—c1qq O c2n 1oad O
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In our second decomposition, we write K = Ko + (K — K3), where K includes the path dynamics:

Ky =111 (-L”EIJ o7 )

c2n 1odd Kpath

For each / € [n], let (K} ?th)lgmg denote the upper-left £ x ¢ principal submatrix of KP*", For

¢ € [n — 2], we define the perturbation matrix E, = diag(0,0,...,0,1) € R and the perturbed
path matrix

By = (KP*™)1<i <0 + " Eb.
Additionally, we set B,_; = KP*"  Finally, for each £ € [n — 1], we define the embedding of B,
into the full (n — 1) x (n — 1) spcace as

A= (% g) € R(=Dx(n=1),

3.3.2 Proof Sketch of Lemma 9

First, we outline the proof strategy. We will decompose the expression for f(ty) into several com-
ponents and analyze each one separately. The key approximation steps will be as follows:

f(ty) = eqettfe;
T (tg—t())KetoKel

=e,e

~ eg ettt K gtoKig) (Step 1)
A e;e(t‘*tO)K(O, q’ (Step 2)
~ ey el (0, )" (Step 3)
~ e elte—t)(n= DR g (Step 4)
~ e] elteto)(n=DAcg (Step 5)
R %1?1:6]‘1’ (Step 6)

where the symbol & indicates that the absolute value of the difference between the terms on either
side is bounded by some constant (independent of ¢) multiplied by ¢~ 1/2.

We will establish bounds for each approximation step and then combine them to obtain the final
result.

Step 1: Approximating e by elof1
First, we have

< An—1)+1

< 5 (2¢7! + ¢ < dnel
c

n
I = Kilh = 31K
1=

By Lemma 4, we get
[efoB — ¢t Bl < to || K — K11 < 4nc/*e < dne™ /2.

Therefore, by Lemma 3, we obtain

He;e(tefto)KetoKel _ e;e(tzfto)KetoKl te*to)K”l R et0K1 Hl .

eilr < |leg e e lexll:

< dnc™ V2, (7)
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Step 2: Approximating e%1e; by (0,q)"

By Lemma 5, we obtain

2n —1)+1 _1
eftoc (ZLQTL) LTLQ ] OT
to K
e0hl = c2"(n71)+1|-n71 ,

—to 2
cen —1

AT loaa O

7[ 2 J

e

and
c2n(n71)+1 \_n71

20 3 —to - =
il Gt D1 24 S R c2 2 1

elfig, = [e7? 2n 2

— dd
’ -1 ’

Therefore, we have

2n
M (n=D+1  n—1
HetOKIel - (qu)Tul <2 o

2n
1/4¢ " (n=-1)+1 n—-1
—C/%L%J

(by to = c'/%)
4

< 2¢
< 2c71/2, (by ¢ >1)

From this, we get

He;e(tg—to)KetoKlel _ e;'e(tg—to)K(O, qT)TH < He;e(tg—to)KH ) HetoKlel — (0, qT)TH
1

1 1

S 26_1/2
< 2ne™ Y2, (8)

Step 3: Approximating e(t¢t—t0)K by elte—to) K2

KK — A(n—1)+1 (0 21l
2= @ 0 e ding(loa) )

Since we have

we can bound the norm of the difference between K and Ks:
|K — Kaljy <4-¢72",
By Lemma 4, we obtain
He;re(tﬁto)K(Q q")T — el elte—t)Kz2 (g qT)TH1 < [leltemto) K _ glte—to) Kz |,

< (te —to)[| K — K21

< TY2 g

<4

< 4c"

< dne™ 12, (9)
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Step 4: Approximating e c(t*~%0)52(0 qT)T by e]—e(”_tO)(”_l)KPathq
By Lemma 5, we have

C2n n— n
—(te—to) I | 2|

o2n

OT

2n
e(tlfto) ¢ (?2:11)+1 Kpath

€
elte—to) K2 _

%
where * denotes an appropriate vector. Thus, we get

2n
_ tr—tn) < (n=1)+1 K path
e;l—e(tg to) Ko (O,QT)T _ e;l'e( —to) on

¢ (n—1)+1 ppath
s KPR

Since and (n — 1)K path are both nonexpansive Metzler matrices, we have

2n., ;
te_tO)L ('C” n1>+1Kpdth

e — eltemto)(n=DEP )| R PR | < 4o
Finally, we obtain

e;re(tgfto)KQ(O’qT)T o eire(tgfto)(nfl)Kpathq < 47" < 4n071/2. (10)

Step 5: Approximating elte—to)(n—1)KPh by elte—to)(n—1)A;
By construction, it is straightforward to verify that for all £ € [n — 1],
KPR — Ay = 2¢78 + 2¢7 D < 467

Since KPah and A, are nonexpansive Metzler matrices, by Lemma 4, we obtain

[efettemonmnintg _ gfetteminbacg| < e | - el DR gl g

< He(té_t())Kpath o e(tg—to)Ag”l

< (te = to)(n = DIEP*™ — Al

<At —to)(n — 1)~

< 4tmc—£

= dnct—12ct

= dnc™V/2, (11)
Step 6: Approximating e] e(tt—t0)(n=DA Ly 31/
We consider the eigenvalues of the matrix By. Note that By is symmetric. Let A\ > Ao > - > Xy
be eigenvalues, and let vy, v9,..., v, be orthonormal eigenvectors. Note that A\; = 0 and v; = 1.

By Lemma 6, we have
x| Byx
Ay = max -

z£0,z11 xT'XT
—1 2

_ — i1 ¢ (i1 — )

= max 7

x#£0,x 11 > 11‘2
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—1
< pax = Zz’=1($i+1 - 332')2

- z#0,xl1 Zle 1-12

_ L <2 oS <%) _ 2) (by Lemma 7)
2

< T4l (by the inequality cosz > 1 — % for any = > 0)

By the spectral decomposition By = Zi:l )\kvkvl;r, we obtain

¢
Qlte=to)(n=1)Be g _ %1 + 3 ety Te,
k=2
This implies that

/+1
< Y elem )=y e |- gy
T k=2
/+1
<) elterto)nhs (by v e1] <1 and [lug[ < 1)

e(tz—to)(”—l)Bzel _ %1

te—to)(n — 1)A2)
< nexp ((te — to)A2)

<nexp< t@—to 7r “1)

e /2 1/4) 2 —e+1)
n2

e
o 1 5)

C

< nexp (
(

(
(

< ne_rT2
Since ¢ > n?, we obtain
1 1
T (to—to)(n—1)A T T (ti—to)(n—1)A, 17
e elte=to)(n=1Arg Zl[lﬂq < |le] elte—to)(n=1) - 1
_NleTelteto)m—nBe _ 147
1 7 )
< ne_%zcl/4
< ne V2, (12)

Combining the Bounds

Summing up the inequalities (7), (8), (9), (10), (11), and (12) together with the triangle inequality,
we obtain the inequality (3), completing the proof of Lemma 9.
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