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Fig. S1. 'H NMR spectrum of compound 2a recorded in DMSO-ds (600 MHz).
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Fig. §2. C NMR spectrum of compound 2a in DMSO-ds (151 MHz).
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Fig. 825 Comparative IR spectra of compound 2a: experimental (black) vs theoretical (red)
transmittance. Theoretical spectrum was computed using DFT (B3LYP/def2-TZVP) and

plotted with a Gaussian convolution to simulate peak broadening.

Experimental vs Theoretical IR Spectrum

T W Ty

100 1

80

60

_ Vi\j ¥ v

20 1

Transmittance (%)

—— Experimental-2a
—— Theoretical-2a

4000 3500 3000 2500 2000 1500 1000 500 0
Wavenumber (cm-?)

29



30



Fig. 826 Comparative IR spectra of compound 2b: experimental (black) vs theoretical (red)
transmittance. Theoretical spectrum was computed using DFT (B3LYP/def2-TZVP) and
plotted with a Gaussian convolution to simulate peak broadening.
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Fig. S27 Comparative IR spectra of compound 2c: experimental (black) vs theoretical (red)
transmittance. Theoretical spectrum was computed using DFT (B3LYP/def2-TZVP) and
plotted with a Gaussian convolution to simulate peak broadening.
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Fig. 828 Comparative IR spectra of compound 2d: experimental (black) vs theoretical (red)
transmittance. Theoretical spectrum was computed using DFT (B3LYP/def2-TZVP) and
plotted with a Gaussian convolution to simulate peak broadening.
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Fig. §29. Comparative IR spectra of compound 2e: experimental (black) vs theoretical (red)
transmittance. Theoretical spectrum was computed using DFT (B3LYP/def2-TZVP) and
plotted with a Gaussian convolution to simulate peak broadening.
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Fig. §30. Comparative IR spectra of compound 2f: experimental (black) vs theoretical (red)

transmittance. Theoretical spectrum was computed using DFT (B3LYP/def2-TZVP) and
plotted with a Gaussian convolution to simulate peak broadening.

36



Fig. S31. Comparative IR spectra of compound 2g: experimental (black) vs theoretical (red)
transmittance. Theoretical spectrum was computed using DFT (B3LYP/def2-TZVP) and
plotted with a Gaussian convolution to simulate peak broadening.
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Fig. 8§32 Comparative IR spectra of compound 2h: experimental (black) vs theoretical (red)
transmittance. Theoretical spectrum was computed using DFT (B3LYP/def2-TZVP) and
plotted with a Gaussian convolution to simulate peak broadening.
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Fig. S33 (HOMO, LUMO) orbitals, Molecular Electrostatic Potential plots (MEP) and
optimized structures (2a—2h and afatinib) at B3LYP/def2-TZVP level in gas phase.

Fig. S34. 2D interaction diagrams of ligands docked into the active site of the (PDB
ID: 4ZXT). (A-I) represent compounds 2a—2h, respectively, and (I) corresponds to
the standard drug Afatinib.
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Fig. S35 Linear regression between AutoDock Vina binding scores (kcal mol™) and

cytotoxicity against A549 cells (logio ICso, uM) for compounds 2a—2h (Afatinib excluded). A
simple least-squares fit gives R?= 0.002 (p = 0.914); Spearman p = 0.048 (p = 0.910).
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Fig. S36. MTT assay evaluation of cytotoxic effects of synthesized compounds (2a—2h) on A549 lung
carcinoma cells. Each row corresponds to one compound: the first column displays cell viability (%) as
a function of concentration (uM); the second column shows the control A549 cells; the next three
columns (T1, T2 and T3) represent triplicate treated wells for the corresponding compound. Decreased

cell density and morphological damage reflect concentration-dependent cytotoxicity.
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Table S1: Experimental and calculated '"H NMR chemical shifts ([] in ppm) of compound 2a
at the B3LYP/def2-TZVP level of theory in DMSO phase.

B3LYP/def2
Atom | -TZVP Exp
H24 4.4 4.2
H22 5.0 7.1
H23 4.5 7.1
H26 7.5 7.2
H27 7.5 7.2
H29 7.5 7.2
H25 7.7 7.3
H28 7.6 7.3
H30 7.0 11.1
H31 7.1 12.1

RMSD 2.30
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Table S2: Experimental and calculated "H NMR chemical shifts ([] in ppm) of compound 2b
at the B3LYP/def2-TZVP level of theory in DMSO phase.

B3LYP/def2
ATOM | -TZVP Exp
H33 3.7 3.7
H35 3.7 3.7
H34 4.0 3.7
H24 4.3 4.2
H23 4.4 7.0
H22 4.9 7.0
H28 6.9 7.1
H30 7.0 12.0
H26 7.1 7.1
H31 7.1 11.0
H25 7.3 7.1
H29 7.6 7.1

RMSD 2.1
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Table S3: Experimental and calculated '"H NMR chemical shifts ([ in ppm) of compound 2¢
at the B3LYP/def2-TZVP level of theory in DMSO phase

B3LYP/def2

Atom | -TZVP Exp
H26 4.5 4.3
H25 4.5 7.2
H24 5.1 7.2
H27 7.6 7.4
H30 7.8 7.4
H29 7.9 7.7
H28 8.0 7.7
H31 7.0 11.1
H32 7.1 12.1

RMSD 24
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Table S4: Experimental and calculated 'H NMR chemical shifts (L) in ppm) of compound 2d
at the B3LYP/def2-TZVP level of theory in DMSO phase.

B3LYP/def2
ATOM | -TZVP Exp
H21 5.1 7.2
H22 4.5 7.2
H23 4.4 4.2
H24 7.4 7.2
H25 7.6 7.3
H27 7.5 7.2
H28 7.7 7.3
H29 7.0 11.1
H30 7.1 12.1

RMSD 24
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Table S5: Experimental and calculated '"H NMR chemical shifts ([ in ppm) of compound 2e
at the B3LYP/def2-TZVP level of theory in DMSO phase

B3LYP/def2
Atom | -TZVP Exp
H24 4.4 4.2
H23 4.5 7.2
H22 5.1 7.2
H29 7.4 7.2
H26 7.5 7.2
H28 7.6 7.5
H25 7.6 7.5
H30 7.0 11.1
H31 7.1 12.1

RMSD 24
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Table S6: Experimental and calculated "H NMR chemical shifts ([] in ppm) of compound 2f
at the B3LYP/def2-TZVP level of theory in DMSO phase

B3LYP/def2
Atom | -TZVP Exp
H33 2.0 23
H32 24 23
H34 2.5 23
H24 43 4.2
H23 4.5 7.1
H22 4.9 7.1
H30 7.0 11.1
H31 7.1 12
H25 7.3 7.1
H28 7.4 7.1
H26 7.4 7.1
H29 7.5 7.1

RMSD 2.1
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Table S7: Experimental and calculated 'H NMR chemical shifts (L] in ppm) of compound 2g
at the B3LYP/def2-TZVP level of theory in DMSO phase

B3LYP/def2
Atom | -TZVP Exp
H24 4.4 4.2
H23 4.5 7.1
H22 5.1 7.1
H30 7.0 11.1
H31 7.1 12.1
H28 7.2 7.1
H26 7.3 7.2
H25 7.5 7.3
H29 7.7 7.3

RMSD 24
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Table S8: Experimental and calculated '"H NMR chemical shifts (] in ppm) of compound 2h
at the B3LYP/def2-TZVP level of theory in DMSO phase

B3LYP/def2-

Atom | TZVP Exp
H22 5.0 7.43
H23 4.5 7.42
H24 5.8 5.25
H26 7.6 7.2
H27 7.5 7.3
H28 7.5 7.2
H30 7.0 11
H31 7.1 12.06

RMSD 2.6
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Table S9: Experimental and calculated 3C NMR chemical shifts ([] in ppm) of compound 2a
at the B3LYP/def2-TZVP level of theory in DMSO phase

B3LYP/def2
Atom | -TZVP Exp
Cé6 48.9 39.5
C3 71.2 62.7
C13 104.9 92.3
C4 131.7 123.0
C10 137.2 130.6
C9 138.0 131.1
Cl2 139.5 131.1
C8 140.0 132.1
Cll 139.6 132.1
C17 157.1 148.0
C7 160.9 153.3
Cl4 166.0 156.1
C19 171.3 161.5
C2 175.6 166.3

RMSD 8.8
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Table S10: Experimental and calculated 3C NMR chemical shifts ([J in ppm) of compound
2b at the B3LYP/def2-TZVP level of theory in DMSO phase

B3LYP/def2
ATOM | -TZVP Exp
Cé6 48.1 39.5
C32 62.3 59.6
C3 71.3 63.8
C13 104.9 93.3
Cll 117.1 118.2
C9 128.3 119.4
C4 131.8 123.4
C8 140.0 132.9
Cl12 140.9 132.9
C7 151.0 140.9
C17 157.0 154.0
Cl4 165.7 156.6
C19 171.3 162.1
C10 173.5 162.7
C2 175.5 167.0

RMSD 8.2
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Table S11: Experimental and calculated '*C NMR chemical shifts ([] in ppm) of compound
2¢ at the B3LYP/def2-TZVP level of theory in DMSO phase

B3LYP/def2

Atom | -TZVP Exp
Cé6 49.3 39.5
C3 69.0 61.3
C15 103.6 91.0
C10 118.3 113.2
C4 131.6 122.5
Cl1 133.3 122.6
C8 141.0 132.2
Cl4 141.9 132.2
C13 145.2 135.9
C9 146.5 135.9
C19 156.8 153.2
Clé6 165.7 153.4
C7 167.4 156.3
C21 171.4 161.4
C2 175.4 166.1

RMSD 9.60
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Table S12: Experimental and calculated '*C NMR chemical shifts ([] in ppm) of compound
2d at the B3LYP/def2-TZVP level of theory in DMSO phase

B3LYP/def2
ATOM | -TZVP Exp
Cs 48.3 34.6
C2 69.3 57.8
Cl12 104.3 87.5
C3 131.8 118.5
C10 138.6 127.6
C8 140.4 128.8
C7 141.3 129.2
Cll 142.3 131.6
&) 149.6 142.6
Clé6 156.9 148.9
Cé6 158.9 151.8
CI13 165.1 157.0
CI8 171.2 159.6
Cl 175.7 161.9

RMSD 11.5
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Table S13: Experimental and calculated '3C NMR chemical shifts (] in ppm) of compound
2e at the B3LYP/def2-TZVP level of theory in DMSO phase

B3LYP/def2

Atom | -TZVP Exp
Cé6 48.5 39.5
C3 69.4 62.5
C13 104.0 92.2
C4 131.7 123.2
C10 149.8 124.0
C9 141.3 133.9
Cl2 141.6 133.9
C8 142.7 135.4
Cll 143.1 1354
C17 156.9 147.8
C7 160.1 153.7
Cl4 165.2 156.6
C19 171.3 161.8
C2 175.3 166.6

RMSD 10.7
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Table S14Experimental and calculated 13C NMR chemical shifts ([J in ppm) of compound 2f
at the B3LYP/def2-TZVP level of theory in DMSO phase

B3LYP/def2
Atom | -TZVP Exp
C27 28.2 24.8
Cé6 48.4 39.5
C3 71.5 63.3
C13 105.0 92.8
C4 131.8 123.4
Cll1 138.5 131.4
C8 139.2 1314
Cl2 139.6 133.1
C9 139.8 133.1
C10 151.5 139.9
C17 157.1 145.4
C7 157.2 153.7
Cl4 165.9 156.4
C19 171.3 161.8
C2 175.5 166.7

RMSD 8.6
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Table S15: Experimental and calculated 3C NMR chemical shifts (L) in ppm) of compound
2g at the B3LYP/def2-TZVP level of theory in DMSO phase

B3LYP/def2
Atom | -TZVP Exp
Cé6 48.3 | weak
C3 69.7 58.8
C13 104.5 88.3
Cll1 124.0 114.5
) 126.2 115.3
C4 131.8 119.1
C8 141.6 128.8
C12 142.5 129.7
C7 156.4 140.3
C17 156.9 149.5
Cl4 165.0 152.2
C19 171.3 157.6
C2 175.4 160.3
C10 178.5 162.4

RMSD 12.6
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Table S16: Experimental and calculated '3C NMR chemical shifts () in ppm) of compound
2h at the B3LYP/def2-TZVP level of theory in DMSO phase.

B3LYP/

def2-
Atom | TZVP | Exp
Cé6 45.2 32.1
C3 65.6 54.1
Cl13 100.8 86.1
C4 130.9 118.5
C9 139.7 128.6
C10 139.8 129.3
Cll 141.7 130.3
C7 151.4 134.1
Cl12 152.7 135.7
C8 153.8 135.9
C17 156.9 149.5
Cl4 167.6 153.0
C19 170.9 158.7
C2 176.4 162.1

RMSD 12.7
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Table S17 Comparative overview of reported catalytic systems for the synthesis of

pyrano[2,3-d]pyrimidinone derivatives under different reaction conditions, along with the
present AgaWOQa-catalyzed protocol.

Entry | Catalyst Condition Time/Yield Reference
(%)
1. | y-Fe;O;@SiO,@[Bis-APTES]Cl,- | EtOH, 70 °C 30min/95 (ref. 6)
NPs
2. | Fes04@HWSS@Ag® EtOH, 75 ©°C 20-30/80-95 (ref. 7)
3. | Mn-ZIF-8@ZnTiO4 EtOH/H,0, 70 | 15-30min/95 (ref. 8)
oC
4. | DABCO H,O, RT, 5 min/94 (ref. 9)
5. | PPI H,0O/reflux 20 min/94 (ref. 10)
6. | Cellulose based-Nanocomposite H,0, RT 30 min/ 96 (ref. 11)
7. | Fes04@Si10,@(CH;);-Urea- Solvent free, 60 | immediately/98 | (ref. 12)
SO;H/HCI oC
8. | LDH@TRMS@NDBD@Cu(NOs3),, | Solvent- 5 min/97 (ref. 13)
free, RT
9. | CS-ZnONPs H,O0, MW 3 min/ 95 (ref. 14)
10.| 2-aminopyridine EtOH/Reflux 10 min/92 (ref. 15)
11.] Ag; WO, EtOH/H,0, 70 | 5 min/95 This
oC work
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Table S 18 Structure-Activity Relationship (SAR) analysis of synthesized pyrano[2,3-
d]pyrimidinone derivatives (2a-2h) against the A549 cell line, correlating ICso values,
physicochemical descriptors, and docking scores with substituent effects

Entry | Substituent | IC50 | TPSA |log | Docking | Activity SAR
@M) | (A3 P Score Class Observation
(kcal/mol)

2a None 120.65 | 124.76 | 1.13 | -7.20 Weakly Parent
(Simple active scaffold
scaffold) shows
minimal
activity;
limited
substitution
reduces
binding.

2b -OMe 89.09 | 133.99 | 1.40 | -7.24 Moderately | Electron-
active donating
OMe group
improves
activity
modestly via
enhanced
solubility.

2c -CN 59.13 | 148.55 | 1.35 | -6.69 Moderately | Strong
active electron-
withdrawing
CN enhances
polarity but
reduces
docking
affinity.

2d -Cl 4791 | 124.76 | 1.40 | -6.91 Active Chloro
substitution
increases
hydrophobic
contacts,
enhancing
activity.

2e -Br 90.17 | 124.76 | 1.50 | -6.83 Weakly Bulky Br
active substitution
decreases
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bioactivity
likely due to
steric
hindrance.

2f

58.15

124.76

1.39

-6.83

Moderately
active

Methyl group
contributes to
hydrophobic
stabilization,
improving
activity.

65.97

124.76

1.22

-7.58

Moderately
active

Fluoro
substitution
provides
better
docking
affinity but
moderate cell
activity.

2h

-Cl, -Cl
(ortho
dichloro)

39.29

124.76

1.47

-7.34

Most
active

Ortho-
dichloro
substitution
improves
hydrophobic
packing and
binding
stability.

Afatinib

Reference
drug

1.4

87.22

3.95

-8.01

Highly
active

Strong
binding and
potency
validate
reference
standard.
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