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Supporting Information for the manuscript of
“Impact of Supersaturation on Growth, Critical Radius, and Size in Neomycin

Nanoparticle Crystallization Using Anti-Solvent and CTAB”

1. Materials and experimental procedure

1.1. Materials

The neomycin sulfate (99.8%) was purchased from Sigma-Aldrich. CTAB and acetone
(CH3COCHS3 , 99.9%) were provided from Merck.

1.2. Material characterization

The samples were comprehensively characterized using a suite of analytical techniques.
Morphology and elemental composition were investigated using ZEISS instruments: field
emission scanning electron microscopy (FESEM, Sigma VP model) equipped with energy-
dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM, EM10C-
100KV model). Particle size distribution was analyzed by dynamic light scattering (DLS) using a
Malvern Zetasizer. Thermal properties were assessed using Mettler Toledo equipment:
thermogravimetric analysis and derivative thermogravimetry (TGA/DTG, TGA2 model) for
stability, and differential scanning calorimetry (DSC, DSC-2 model) for thermal transitions. The
crystalline structure was determined by X-ray diffraction (XRD, Panalytical X'Pert Pro model),
and functional groups were identified by Fourier-transform infrared spectroscopy (FT-IR,
PerkinElmer Spectrum Two model). Surface topography was evaluated by atomic force
microscopy (AFM, Bruker JPK Nanowizard-2 model). And also Mapping and EDX-a was done
by Vega 3 model aof TESCAN Company.

1.3. Preparation of CTAB solution
To prepare the CTAB solution, 0.365 g of CTAB powder (molecular weight = 364.45 g/mol) was
dissolved in 1.0 liter of double-distilled water and stirred thoroughly to achieve an aqueous

solution with a concentration of 1.00151 mM. The addition of CTAB is hypothesized to reduce
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the surface tension of the formed nanoparticles, a phenomenon attributed to its significant
surfactant properties [39, 40]. This solution was stored at room temperature for five days and
stirred twice daily (morning and evening) to ensure homogeneity and stability. The final CTAB
solution was subsequently utilized as a stabilizing agent in the synthesis of neomycin

nanoparticles.

1.4. Synthesis of neomycin nanoparticles

In this section, the method for the synthesis of neomycin nanoparticles is explained in detail. First,
an exact amount of neomycin powder (purity > 95%) was weighed using a digital analytical
balance (accuracy: +0.1 g) based on the desired equilibrium concentration. The weighed neomycin
was then added to 10 g of double-distilled water (25°C). To ensure complete dissolution, the
mixture was homogenized using a magnetic stirrer at controlled speeds of 300, 350, 400, and 450
rpm for 20 minutes. This range of stirring speeds was selected to investigate the effect of shear
force on solution homogeneity. After confirming the homogeneity of the neomycin solution, a
predetermined amount of CTAB surfactant with a concentration established from prior studies was
added to the beaker. To achieve optimal mixing, the stirring system was activated at a constant
speed between 300 and 450 rpm, and the mixing process continued until equilibrium was reached.
The solution temperature was continuously monitored using a calibrated digital thermometer
(£0.1°C). A turbidity sensor was installed 2 cm from the crystallizer wall to measure changes in
turbidity. Pure acetone (HPLC grade) was added dropwise (0.02 mL per drop) at 5-minute
intervals. The first signs of physical change (e.g., localized cloudiness) were recorded as the initial
saturation point. Acetone addition continued until stable turbidity (supersaturation) was achieved
under isothermal conditions (25°C). The induction time (the interval between initial saturation and
supersaturation), as clearly depicted in Fig.1, Section C (the induction time segment of steps 1 to
4), was measure using a synchronized turbidimeter and reaction timer data. To ensure
reproducibility, the entire process was repeated in four independent trials under controlled
conditions (constant temperature, humidity, and lighting). The schematic diagram of the used
laboratory setup is shown in Fig.2.

It should be noted that, to mitigate the totoxicity of CTAB, the surfactant was extensively removed
post-synthesis. The crude nanoparticle suspension was subjected to centrifugation (12,000 rpm, 30

min, 4 °C) to eliminate free CTAB and acetone. The precipitate was then rigorously washed via
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five cycles of redispersion and centrifugation in a cold ethanol-water solution (70:30 v/v, 4 °C) to
disrupt CTAB's hydrophobic interactions, followed by a final wash with cold deionized water.
Efficacy of CTAB removal was quantitatively confirmed by EDS analysis, which showed a 96%
reduction in bromine content (a signature element of CTAB) from 48.5% (Fig. 6a, before washing)

to 2% ((Fig. 6b, after washing) after the washing process.

2. Theory

2.1. Classical nucleation model

Classical nucleation theory offers a theoretical basis for the formation of new phases such as solid,
liquid, or gas within an existing parent phase during phase transitions [1]. This framework explains
how tiny clusters, or nuclei, of a new phase originate and expand under specific conditions. A key
aspect of this theory is the steady-state nucleation rate, which quantifies the number of nuclei
generated per unit time and volume. This rate is commonly expressed using an Arrhenius-type
equation:

AGcrit (1)

J;= Aexp(-—=-)

Here, A represents the pre-exponential factor, which is influenced by the nucleation kinetics within
the growth medium. The parameters k and T correspond to Boltzmann's constant and the absolute
temperature (K), respectively. Additionally, the correlation between temperature and the
supersaturation ratio (S) is mathematically defined in Eq. 2.

16 ny3v2
3k3T3(Ln §)*

Jo=Aexp |- (2)

Given that the nucleation rate is inversely related to the induction time it can be said that the
induction time in the homogeneous primary nucleation mechanism can be expressed in the
following form [15, 29, 41]:

16 r[y3172

ting = A18XP|———
3k3T3(Ln 5)2

ind

3)

in which A is the nucleation constant, y is the solid—liquid surface tension and v is the molecular
volume.
It should also be noted that the classical power equation presented in Eq. 4 has been used as a

proposed model for secondary nucleation in the absence and presence of a solid phase:
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J=KS" (4)

In this relation, K is an empirical constant related to the rate of secondary nucleation and n
represents the order of secondary nucleation [2, 3].

The induction time for secondary nucleation in the absence of seed crystals can be expressed as
Eq. 5.

INtg=1n K, -nin$ (5)

It is worth mentioning that in Eq. 5 by plotting (In t;,q) against (In S) and calculating the slope of
the resulting line, the degree of secondary nucleation (n) can be determined. This approach enables
the analysis of nucleation behavior and contributes to a deeper understanding of the mechanisms

governing the crystallization process.

2.2. Kashchiev heterogeneous nucleation model
In this section, the model proposed by Kashchiev et al. [4, 5], for calculating the induction time in

the heterogeneous primary nucleation mechanism is presented.

4c3p?3

_ 3m
ting = Kexp( - %)(1 - exp ( - :_T))( 1 +m),exp(27(1 n 3m)kT52) (6)

In which c is shape factor, and m is related to growth type.

The relationship in Eq. 6 can be summarized as follow:

-1
14

)

(1 + 3m)In®s (7)
Kashchiev et al. [4] has reported values of 1, 0.5, and 0.33 for the m parameter. The selection of
any of these three values for the proposed model is made by fitting the experimental data to Eq. 7.

In this article, the value of m is considered to be equal to 1; therefore, Eq. 7 can be expressed as

follows:
-1
tina = K(S(S - 1) * explii( 14 )
4In’S &
If the equation is written as follows:
1 3
tind-(54(5 - 1)Z> = Kexpiil(— )
4In®S (9)

If one takes the natural logarithm from Eq. 9 then:
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it . S*S - DY =In K + 4131/25 .
1 3 1

Therefore, by plotting it g S*(S = 1)) against (ﬁ) and fitting the experimental data, the
optimal value for m can be selected.
2.3. Interfacial energy calculations
The classical nucleation theory can be adapted for a solid-liquid system to determine interfacial
energy, as expressed in Eq. 11 [6-8]:
J, = Aexp | - #?:S)Z (11)
In which f'and vy are the particle shape factor and the interfacial energy of solid-liquid phase (J/m?).
The remaining parameters are consistent with those in Eq. 3. Given the inverse relationship
between nucleation rate and induction time, Eq. 11 can be reformulated as Eq.12:

3172
ting = Aq€XP m (12)
If one takes the natural logarithm from Eq. 12 then:
Lnt, ,=LnA; + #?:S)Z (13)
Therefore, by plotting Ln t;,q against 1/(T3(Ln S)?) and finding the slope of the line (A), interfacial
energy can calculated:
a=’t );"2 (14)
Finally, the interfacial energy can be calculated as Eq.15:
y=kC” as)
In this equation v, represents the molecular volume (m?) and is defined as v,,=M/pN. Here p is
density measured (kg/m?), Mw indicates molecular weight (kg/mol), k is the Boltzmann constant,

which has a value of 1.38x10723 (m?-kg/(s*'K)), and N refers to Avogadro's number, equal to
6.022x10% mol™.
It should be note that Eq. 16 can be used to calculate the critical radius [1].

_ 2yv
" kTins (16)
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3. Figures of Manuscript

Acetone

(anti solvent)

The CTAB solution was made
and retention time 5 days at rool

A i

A: Solution of neomycin in
distilled water
(unsaturated solution)

IF: Nanoparticles of neomycin
stability with CTAB stabilizer for
several days at room temperature

E: Nanoparticles of neomyein
Stability without CTAB stabilizer

for one day at room temperature
(C: Induction time D: Supersaturated solution

Fig. 1. The solution preparation to final results would include several consecutive stages: (A)
unsaturated solution, (B) saturation state, (C) induction time measurement, (D) final
supersaturation, (E) stability without CTAB, (F) stability with CTAB, (G) solvent evaporation,

(H) weighing, and (I) nanoparticle characterization.
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154 Fig 2. Schematic diagram of the laboratory setup: (1) First Stirrer, (2) Mixer or (Magnetic
155 Stirrer), (3) First Crystallizer, (4) Burt, (5) Base, (6) Laboratory clamp, (7) Thermometer, (8) Pc
156 Lab, (9) In situ turbidity meter, (10) Reaction timer and (11) LED, (12) Pump, (13) Support, (14)
157 Second Stirrer, (15) Mixer or (Magnetic Stirrer), (16) Second Crystallizer and (17) Valve.
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Fig. 4 FSEM images of synthesized neomycin nanoparticles (A-C) 100.00KX.
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Fig. 5 TEM imaging of synthesized neomycin nanoparticles (A, B) 60.00 KX, C) 35.790 KX
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and D) 27.800 KX.
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Fig. 7 Elemental mapping of synthesized neomycin.
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260 4. Tables of manuscript

261 Table 1. Comparison between the induction time measurement using two methods of visual and
262 in situ turbidimeter.
Supersaturation Number of IHduC'f(ISH e Stal?dgrd In?%iﬁ)?ﬁii;nelteef * Stal?dgrd
repeats (Visual method) deviation method) deviation
1.18 8 129 10 112 10
1.2 8 117 9 103 9
1.21 8 123 11 101 10
1.25 8 121 10 99 9
1.29 8 115 9 96 8
1.33 8 109 8 94 8
1.34 8 114 9 91 8
1.351 8 101 8 90 7
1.379 8 110 9 89 7
1.408 8 103 10 86 8
1.43 8 102 84 7
1.45 8 109 83 6
1.47 8 97 81 7
1.48 8 93 9 79 7
1.66 8 100 10 77 7
1.663 8 95 8 76 6
1.664 8 99 8 74 6
1.67 8 85 8 73 5
1.785 8 88 7 70 6
1.9 8 79 7 64 5
263
264
265

266



267 Table 2. Solubility, induction time, critical radius and supersaturation concentration at the
268 nucleation point of neomycin sulfate in the presence of CTAB solution.
Agitation Neomyein 1r}1t1al Solubility  Supersaturatio Indgctlon Critical radius
rate concentration (g/kg) n(S) time (nm)
(rpm) (g/kg) (s)
20 17 1.18 112 1.689
20 16 1.21 103 1.467
300 20 15 1.33 91 0.981
20 13.8 1.45 86 0.753
20 12 1.66 79 0.552
30 25 1.2 101 1.534
30 24 1.25 94 1.254
350 30 23.5 1.28 89 1.133
30 21.1 1.43 81 0.782
30 21 1.67 74 0.545
40 31 1.29 99 1.099
40 29 1.379 96 0.957
400 40 27 1.48 83 0.714
40 24 1.66 76 0.552
40 21 1.9 72 0.436
50 37 1.351 90 0.932
50 35.2 1.408 84 0.817
450 50 34 1.47 77 0.726
50 30 1.666 70 0.548
50 28 1.785 64 0.483
269
270
271
272
273
274

275



276
277

Table 3. Correlation coefficients of different nucleation models in the presence of 0.6 g/kg

CTAB solution.

Line equation, R?

Initial neomycin
concentration (g/Kg) Secondary

nucleation model

Classical homogeneous
nucleation model

Kashchiev heterogeneous
nucleation model

20
30
40
50

-0.96X+4.83; 0.9297
-0.89X+4.74; 0.9406
-0.88-+4.81; 0.9275
-1.34X+4.92; 0.9120

0.01X+4.36; 0.9728
0.01X+4.29; 0.9647
0.03X+4.24; 0.9653
0.05X+4.03; 0.9818

-0.04X+4.35; 0.8702
-0.03X+4.18; 0.8662
-0.02X+4.12; 0.8815
-0.02X+4.10; 0.7703

278

279

280

281

282

283

284

285
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289

290



291 Table 4. Comparison of interfacial energy for CTAB solution concentrations of 0.6 g/kg at 25 °C

292

293

with existing results.

Initial neomycin Interfacial energy this  Interfacial energy (mJ.m2),

2
concentration (g/Kgoivent) R work (mJ.m™?2) Motahari et al [6].
20 0.9728 1.33 7.68
30 0.9647 1.41 8.056
40 0.9653 1.9 -
50 0.9726 2.14 -
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