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1. Experimental

1.1. Characterization

Chemicals of analytical purity, sourced from commercial suppliers, were utilized as received.
Solvents, when required, underwent drying using conventional techniques. Various spectral
data were employed to confirm the purity and chemical composition of all synthesized
compounds. Structure characterization of the produced materials was assessed by utilizing 'H
NMR, *C NMR, and 'F NMR with Varian Unity 400 spectrometers in CDCls solution. 'H
NMR and '*C NMR chemical shifts are reported in ppm referenced to tetramethylsilane. The
residual proton signal of the deuterated solvent was used as internal standard for 'H NMR and
BC NMR spectra. ’FNMR chemical shifts are reported in ppm referenced to
trichlorofluoromethane as an external standard.

Infrared absorption spectra were measured in dry KBr with a Perkin-Elmer B25

spectrophotometer.
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The assessment of mesophase phases and the determination of transition temperatures
for the hydrogen-bonded compounds involved using a Nikon Optiphot-2 polarizing
microscope in conjunction with a Mettler FP-82 HT hot stage and control unit. Enthalpies
were determined by analyzing DSC thermograms obtained with a Perkin-Elmer DSC-7
instrument, employing a heating and cooling rate of 10 K min~".

The photoisomerization studies in solution were conducted using an Ocean Optics HR
2000+ spectrophotometer, and absorption spectra were recorded at room temperature. The
solutions in chloroform were taken in a lcm quartz cuvette and covered to avoid the
evaporation of the solvent. The solutions were irradiated with UV light of ImW/cm? using
Bluepoint LED Eco Honle at a wavelength of 365 nm. A heat filter is inserted between the
sample and the source to avoid the influence of UV heat on the sample. The trans-cis-trans
photoisomerization in the LC phase was performed using of 1 mW/cm? Bluepoint LED Eco
Honle at a wavelength of 365 nm.

X-ray investigations were carried out with an Incoatec (Geesthacht, Germany) IuS
microfocus source with a monochromator for CuKa radiation (A = 0.154 nm), calibration with
the powder pattern of Pb(NO3)2. A droplet of the sample was placed on a glass plate on a
Linkam hot stage HFS-X350-GI (rate: 10 K/min). The samples were cooled from the isotropic
liquid and held at specific temperatures in the respective LC phases during the individual
XRD scans. Exposure time was 5 min; the sample-detector distance was 9.00 cm for WAXS
and 26.80 cm for SAXS. The diffraction patterns were recorded with a Vantec 500 area
detector (Bruker AXS, Karlsruhe) and transformed into 1D plots using GADDS software.

1.2. Synthesis of AX

The proton donors AX were synthesized starting from different key intermediates using

standard reported procedures. '+

4-(Dodecyloxy)-3-fluorobenzoic acid AF. "H NMR (402 MHz, cdcls) & 7.87 (d, J = 8.7 Hz, 1H,
ArH), 7.80 (d, J = 11.5, 1H, ArH), 6.99 (t, J = 8.3 Hz, 1H, ArH), 4.10 (t, J = 6.5 Hz, 2H, OCH.), 1.87
~ 1.82 (m, 2H, OCH>CH>), 1.52 — 1.18 (m, 18H, CH,), 0.8 (t, J = 6.6 Hz, 3H, CHs). '°*C NMR (101
MHz, cdcls) & 170.28, 153.02, 152.14, 127.36, 121.50, 117.85, 113.30, 69.39, 31.87, 29.60, 29.58,
29.52, 29.47, 29.30, 29.26, 28.94, 25.81, 22.64, 14.06. '’F NMR (378 MHz, cdcl;) § -133.84 (dd, J =
10.7, 8.8 Hz).

3-Chloro-4-(dodecyloxy)benzoic acid ACL. '"H NMR (402 MHz, cdcl3) § 8.12 (d, J = 2.0 Hz,
1H, ArH), 7.98 (dd, J = 8.6, 2.0 Hz, 1H, ArH), 6.95 (d, J= 8.7 Hz, 1H, ArH), 4.10 (t, J= 6.5
Hz, 2H, OCH3), 1.94 — 1.80 (m, 2H, OCH2CH>), 1.55 — 1.21 (m, 18H, CH>), 0.88 (t, /= 6.8
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Hz, 3H, CH3). *C NMR (101 MHz, cdcls) § 170.68, 159.01, 132.23, 130.48, 122.94, 121.90,
112.03, 69.37, 31.87, 29.61, 29.59, 29.52, 29.48, 29.30, 29.24, 28.85, 25.84, 22.65, 14.07.

3-Bromo-4-(dodecyloxy)benzoic acid ABr. '"H NMR (402 MHz, cdcl3) § 8.29 (d, J = 1.6 Hz,
1H, ArH), 8.02 (d, /= 8.4 Hz, 1H, ArH), 6.91 (d, J = 8.6 Hz, 1H, ArH), 4.10 (t, J = 6.3 Hz,
2H, OCH3), 2.00 — 1.77 (m, 2H, OCH2CH>), 1.64 — 1.08 (m, 18H, CH>), 0.88 (t, J = 6.4 Hz,
3H, CH3). 3C NMR (101 MHz, cdcls) & 170.54, 159.83, 135.40, 131.21, 122.33, 111.97,
111.83, 69.45, 31.87, 29.61, 29.60, 29.52, 29.48, 29.31, 29.22, 28.84, 25.86, 22.65, 14.07.

1.3.1. Synthesis of Azo

The general procedure involved adding a solution of sodium nitrite (2.28 g, 33 mmol, 1.1 eq.)
dissolved in 12 ml of water and 25 ml of a 10% potassium hydroxide aqueous solution to
phenol (30 mmol, 1.0 eq.). The solution was cooled to -20 °C using an acetone/dry ice
mixture. Subsequently, a cooled solution of 4-aminopyridine (3.30 g, 36 mmol, 1.2 eq.)
dissolved in 10 ml of water and 16 ml of concentrated HCl was added dropwise under
vigorous stirring over 90 minutes. The reaction temperature was maintained at around -15 °C
throughout the process. After the complete addition, the reaction mixture was stirred for an
additional 1 hour, followed by the addition of sodium bicarbonate until no effervescence was
observed. The resulting solid material was filtered off, washed with distilled water, dried

under vacuum, and used without further purification for the next step.
1.3.2. Synthesis of Azon

Dissolving 2 mmol (1.0 eq.) of the specific 4-hydroxyphenylazopyridine Azo in 25 ml of
DMF, along with the appropriate 1-bromoalkanes (2.4 mmol, 1.2 eq.), K2CO3 (6 mmol, 3 eq.),
and a catalytic amount of KI, the reaction was agitated for 18 hours at 90°C. After bringing
the reaction mixture to room temperature, it was poured into 100 mL of deionized water,
resulting in a suspension. The suspension was then extracted with ethyl acetate (3 x 50 mL).
The mixed organic layers were washed with water and NaHCO3, dried on anhydrous MgSOa4,
and the solvent was removed under reduced pressure. The desired products were obtained

from the crude material using column chromatography with ethyl acetate/n-hexane (2:8).

4-(4-Octyloxyphenylazo)pyridine, Azo8. Orange solid. 80% Yield, m.p. 71 °C. 'H NMR (600
MHz, CDCl;) & 8.77 (d, J = 6.1 Hz, 2H, Ar-H), 7.95 (d, J = 9.0 Hz, 2H, Ar-H), 7.67 (d, J =
6.1 Hz, 2H, Ar-H), 7.02 (d, J= 9.0 Hz, 2H, Ar-H), 4.06 (t, J = 6.6 Hz, 2H, -OCH,CH,), 1.86—
1.77 (m, 2H, -OCH2CH,), 1.56-1.20 (m, 10H, CH>), 0.90 (t, J = 7.0 Hz, 3H, CH3). '3C NMR
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(151 MHz, CDCl3) 6 162.9, 157.5, 151.1, 146.7, 125.6, 116.1, 114.9, 68.5, 31.8, 29.3, 29.2,
29.1,25.9, 22.6, 14.1.

4-(4-Decyloxyphenylazo)pyridine, Azo10. Orange solid. 65% Yield, m.p. 66 °C. '"H NMR
(600 MHz, CDCl3) 6 8.77 (d, J = 6.1 Hz, 2H, Ar-H), 7.95 (d, J = 8.9 Hz, 2H, Ar-H), 7.67 (d, J
= 6.2 Hz, 2H, Ar-H), 7.02 (d, J = 8.9 Hz, 2H, Ar-H), 4.06 (t, J = 6.6 Hz, 2H, -OCH,CH>),
1.87-1.78 (m, 2H, -OCH,CH,), 1.52-1.21 (m, 14H, CH>), 0.89 (t, J = 7.0 Hz, 3H, CH3). 1*C
NMR (151 MHz, CDCls) 6 162.9, 157.5, 151.1, 146.7, 125.6, 116.1, 114.9, 68.5, 31.8, 29.6,
29.5,29.3,29.2,29.1,25.9,22.6, 14.1.

4-(4-Dodecyloxyphenylazo)pyridine, Azo12. Orange solid. 61% Yield, m.p. 73 °C. 'H NMR
(600 MHz, CDCl3) 6 8.77 (d, J = 6.1 Hz, 2H, Ar-H), 7.95 (d, J=9.0 Hz, 2H, Ar-H), 7.67 (d, J
= 6.1 Hz, 2H, Ar-H), 7.02 (d, J = 9.0 Hz, 2H, Ar-H), 4.06 (t, J = 6.6 Hz, 2H, -OCH,CH>),
1.87-1.78 (m, 2H, -OCH,CH>), 1.53-1.21 (m, 18H, CH>), 0.88 (t, J = 7.0 Hz, 3H, CH3).1*C
NMR (151 MHz, CDCls) 6 162.9, 157.5, 151.0, 146.7, 125.6, 116.1, 114.9, 68.5, 31.9, 29.6,
29.6, 29.5, 29.5,29.3,29.2, 29.1, 25.9, 22.6, 14.1.

4-(4-Tetradeylcoxyphenylazo)pyridine, Azol4. Orange solid. 65% Yield, m.p. 69 °C. 'H
NMR (600 MHz, CDCI3) ¢ 8.77 (d, J = 5.9 Hz, 2H, Ar-H), 7.95 (d, J = 9.0 Hz, 2H, Ar-H),
7.67 (d, J = 6.0 Hz, 2H, Ar-H), 7.02 (d, J = 9.0 Hz, 2H, Ar-H), 4.06 (t, J = 6.6 Hz, 2H, -
OCH:CH»), 1.84-1.80 (m, 2H, -OCH:CH>), 1.56-1.12 (m, 22H, CH), 0.88 (t, J = 7.0 Hz,
3H, CH3)."*C NMR (151 MHz, CDCls) § 162.9, 157.5, 151.0, 146.7, 125.6, 116.1, 114.9,
68.5,31.9,29.7,29.6, 29.6, 29.5, 29.5, 29.3, 29.1, 25.9, 22.6, 14.1.
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2. Additional Data
2.1.  Additional IR-data
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Figure S8. FTIR spectra of the supramolecule CF14 (red) and its complementary components AF (blue), Azo14

(green) in the crystalline state at room temperature: a) enlarged area between 1750 cm™! and 3600 cm™!, and b)
between 1620 cm™' and 1760 cm™.
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Figure S9. FTIR spectra of the supramolecule CBr14 (red) and its complementary components ABr (blue),

Azo14 (green) in the crystalline state at room temperature: a) enlarged area between 1750 cm™! and 3600 cm™!,
and b) between 1620 cm™ and 1760 cm™.

2.2. Additional DSC traces
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Figure S10. DSC heating and cooling traces of the 3-fluoro-4-dodecyloxybenzoic acid (AF) recorded at 10 K
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Figure S11. DSC heating and cooling traces of the 3-chloro-4-dodecyloxybenzoic acid (ACI) recorded at 10 K

min’.
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Figure S12. DSC heating and cooling traces of the 3-bromo-4-dodecyloxybenzoic acid (ABr) recorded at 10 K
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Figure S13. DSC heating and cooling traces of the supramolecule CBr10 recorded at: a) 10 K min™ and a) 5 K
(-l
min.

S14



a) 2" Heating
2" Cooling
SmA
e Cr \
qC) Cr SmC Iso
m\l' SmC / Iso
SmA
CBr12
20 40 60 80 100 120
T[°C]
b) | | — 2™ Heating
—— 2" Cooling
3
)
Cr SmC Iso
/
SmA
CBr12
40 60 80 100 120
T[°C]

Figure S14. DSC heating and cooling traces of the supramolecule CBr12 recorded at: a) 10 K min™! and b) 5 K

min.
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Figure S15. DSC heating and cooling traces of the supramolecule CBr14 recorded at 10 K min'.
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Figure S16. DSC heating and cooling traces of the supramolecule CF10 recorded at: a) 10 K min™' and b) 5 K

min.
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Figure S17. DSC heating and cooling traces of the supramolecule CF12 recorded at 10 K min™.
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Figure S18. DSC heating and cooling traces of the supramolecule CF14 recorded at 10 K min™.
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Figure S19. DSC heating and cooling traces of the supramolecule CCI10 recorded at: a) 10 K min™! and b) 5 K

min’’.
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Figure S20. DSC heating and cooling traces of the supramolecule CCI12 recorded at 10 K min™.
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Figure S21. DSC heating and cooling traces of the supramolecule CC114 recorded at 10 K min™..

2.3.  Additional Textures

CClI8, T=103°C; SmA

Figure S22. Optical textures observed on cooling of the supramolecules: a) CF12 in the SmC phase at 7 =
105°C, and CCI8 b) in the SmC phase at 7= 80°C, and c) in the SmA phase at 7= 103°C.
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3. XRD data

3.1.  SAXS patterns
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Figure S23. SAXS pattern recorded on cooling with a cooling rate of 10K/min of the supramolecule CBr12 in
the SmC; phase.
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Figure S24. SAXS pattern recorded on cooling with a cooling rate of 10K/min of the supramolecule CCI8 at the
indicated temperatures; a) in the SmA phase and b) in the SmC phase.

3.2.  WAXS patterns
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Figure S25. WAXS pattern recorded on cooling with a cooling rate of 10K/min of the supramolecule CBr12 in
the SmC phase.
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Figure S26. WAXS pattern recorded on cooling with a cooling rate of 10K/min of the supramolecule CCI8 at
the indicated temperatures; a) in the SmA phase and b) in the SmC phase.
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Figure S27. 2D-WAXS pattern recorded on cooling with a rate of 10K/min in different LC phases at the
indicated temperatures.
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3.3.

Table S1. Numerical SAXS data of the supramolecule CBr12 in the SmC; phase at 85 °C.

Table S2. Numerical SAXS data of the supramolecule CF8 in the SmA phase at 110 °C.

Table S3. Numerical SAXS data of the supramolecule CF8 in the SmC; phase at 80 °C.

Structural data

20[°] dops, (1] | deate. [nm] A hkl
2.305 3.833 3.833 0.00 10
4.651 1.900 1.916 0.02 20
20.023 0.443

20[°] dos. [nM] | deate. [0] A hkl
1.947 4.537 4.537 0.00 10
3.903 2.264 2.269 0.00 20
18.920 0.469

260 [°] dops. [nm] | deae. [nNM] A hkl
2.068 4.272 4.272 0.00 10
4.149 2.130 2.136 0.01 20
19.241 0.461

Table S4. Numerical SAXS data of the supramolecule CCI8 in the SmA phase at 106 °C.

Table S5. Numerical SAXS data of the supramolecule CCI8 in the SmC;s phase at 80 °C.

201°] dops. [nM] | deate. [nm] A hkl
1.950 4530 4530 0.00 10
19.197 0.462

260 [°] dops. [NM] deaie. [nmM] A hkl
2.255 3.918 3.918 0.00 10
4.546 1.944 1.959 0.02 20
18.740 0.473
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