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Figure S1. PNA performances of K-poisoned Pd-Z-K and the regenerated Pd-Z-K-R 

catalysts under different conditions. a) Gas feed: 200 ppm of NOx and 10 vol.% O2 in 

N2; b) Gas feed: 200 ppm of NOx, 200 ppm of CO, 3 vol.% H2O and 10 vol.% O2 in N2. 

Samples were treated at 500 °C in 10 vol% O2 for one hour before all the tests, and a 

total flow rate of 200 mL·min-1 was used. 
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Figure S2. The correlation between the reduced concentrations of NO and CO (labeled as △NO 

and △CO) during the initial stage of NOx adsorption in PNA tests over Pd-Z-F (a), alkali-metal 

poisoned Pd-Z-Na and Pd-Z-K (b and d) and the regenerated Pd-Z-Na and Pd-Z-K catalysts (c and 

e). △NO (△CO) = C0 - Ct (C0 and Ct represent initial and real-time concentrations of NO or CO, 

respectively). Gas feed: gas feed: 200 ppm of NOx, 200 ppm of CO, 3 vol.% H2O and 10 vol.% O2 

in N2, with a total flow rate of 200 mL min-1. All the samples were pretreated at 500 °C in 10 vol.% 

O2 before the tests. 

Note: he concentrations of CO and NO exhibited a parallel decline during the initial stages of the 

PNA test, attributed to the formation of the Pd2+(NO)(CO) intermediate. Notably, a significantly 

greater quantity of CO and NO is consumed during the PNA tests over Pd-SSZ-13, suggesting the 

presence of a higher density of isolated Pd2+ sites within the material. The introduction of alkali 

metals leads to a diminution in the number of active Pd2+ centers, thereby reducing the formation of 

the Pd2+(NO)(CO) intermediate. Conversely, regeneration with NH4Cl solution alleviates the 

deactivating impact of alkali metals on the Pd sites, resulting in a notably higher production of the 

Pd2+(NO)(CO) intermediate after washing, in comparison to the poisoned Pd-SSZ-13 catalysts. 
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Figure S3. Representative FE-SEM images of Pd-Z-F (a and b), Pd-Z-Na (c and d), Pd-Z-Na-R (e 

and f), Pd-Z-K (g and h) and Pd-Z-K-R (i and j) catalysts. 
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Figure S4. N2-physisorption curves (a) and micropore size distributions (b) analyzed by the NLDFT 

method for K-poisoned Pd-Z-K and the regenerated Pd-Z-K-R catalysts. 
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Figure S5. (a) XRD patterns of K-poisoned Pd-Z-K and the regenerated Pd-Z-K-R catalysts. (b) 

Enlarged XRD patterns (normalized to the intensity of main band at 2θ = 9.6° in the respective 

spectrum) in 33.5-34.5°. 
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Figure S6. 27Al MAS NMR spectra of fresh, poisoned and regenerated Pd-SSZ-13 catalysts. Pd-Z-

F (black), Pd-Z-Na (green), Pd-Z-K (red), Pd-Z-Na-R (blue) and Pd-Z-F (violet). 
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Figure S7. DR UV/Vis spectra of K-poisoned Pd-Z-K and the regenerated Pd-Z-K-R catalysts.  
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Figure S8. EDX mappings of for Pd-Z-F (panels (a)−(c)), the poisoned Pd-Z-Na (panels (d)−(f)) 

and Pd-Z-K (panels (g)−(i)), the regenerated Pd-Z-Na-R (panels (j)−(l)) and Pd-Z-K-R (panels 

(m)−(o)) catalysts. 
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Figure S9. (a, d) TEM, (b, e) HAADF-STEM images, and (c, f) EDX mapping of Pd for Pd-Z-K 

(panels (a)−(c)) and Pd-Z-K-R (panels (d)−(f)) catalysts. 
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Figure S10. EDX mappings of alkali metals for Pd-Z-Na (a), the regenerated Pd-Z-Na-R (b), Pd-

Z-K (C) and the regenerated Pd-Z-K-R (d) catalysts. 
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Figure S11. (a) High-resolution XP Na 1s spectra of the poisoned Pd-Z-Na and the regenerated Pd-

Z-Na-R catalysts; (b) High-resolution XP K 2p spectra of the poisoned Pd-Z-K and the regenerated 

Pd-Z-K-R catalysts. 
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Figure S12. H2-TPR curves (a) and NH3-TPD profiles (b) of K-poisoned Pd-Z-K and the 

regenerated Pd-Z-K-R catalysts. 
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Figure S13. NO-DRIFTS profiles of K-poisoned Pd-Z-K and the regenerated Pd-Z-K-R catalysts. 
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Figure S14. Time-resolved in situ NO-DRIFT spectra for the Pd-Z-F(a), alkali-metal poisoned Pd-

Z-Na and Pd-Z-K (b and d) and the regenerated Pd-Z-Na-R and Pd-Z-K-R (c and e) catalysts. The 

measurements were performed at 100 °C after pretreatment in flowing dry air at 500 °C for about 1 

h. An initial background spectrum was acquired in a continuous flow of N₂ and subsequently 

subtracted from all spectra recorded in a NO-enriched atmosphere, all conducted at a consistent 

temperature of 100 °C. 
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Figure S15. NH3-DRIFTS profiles of K-poisoned Pd-Z-K and the regenerated Pd-Z-K-R catalysts. 
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Figure S16. Time-resolved in situ NH3-DRIFT spectra (950-820 cm-1) for the Pd-Z-F(a), alkali-

metal poisoned Pd-Z-Na and Pd-Z-K (b and d) and the regenerated Pd-Z-Na-R and Pd-Z-K-R (c 

and e) catalysts. The measurements were performed at 25 °C after pretreatment in flowing dry air 

at 500 °C for about 1 h. An initial background spectrum was acquired in a continuous flow of N₂ 

and subsequently subtracted from all spectra recorded in a NH3-enriched atmosphere, all conducted 

at a consistent temperature of 25 °C. 
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Figure S17. Time-resolved in situ NH3-DRIFT spectra (3825-3450 cm-1) for the Pd-Z-F(a), alkali-

metal poisoned Pd-Z-Na and Pd-Z-K (b and d) and the regenerated Pd-Z-Na-R and Pd-Z-K-R (c 

and e) catalysts. The measurements were performed at 25 °C after pretreatment in flowing dry air 

at 500 °C for about 1 h. An initial background spectrum was acquired in a continuous flow of N₂ 

and subsequently subtracted from all spectra recorded in a NH3-enriched atmosphere, all conducted 

at a consistent temperature of 25 °C. 
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Table S1. Textural properties of fresh, alkali-metal-poisoned and Pd-SSZ-13 catalysts. 

Sample SBET  

(m2 g-1) 

Vmicro  

(cm3 g-1) 

Pd-Z-F 536.05 0.233 

Pd-Z-Na 497.89 0.205 

Pd-Z-K 487.14 0.209 

Pd-Z-Na-R 505.74 0.216 

Pd-Z-K-R 498.28 0.224 
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Table S2. Weight percentage of alkali metals before and after NH4Cl washing determined by ICP-

OES. 

Sample Weight (g)  analyte mass fraction  

Pd-Z-Na 0.0405 Na 1.5488% 

Pd-Z-Na-R 0.0393 Na 0.1066% 

Pd-Z-K 0.0435 K 1.9911% 

Pd-Z-K-R 0.0402 K 0.4964% 
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Table S3. Acid Content (μmol/g) of fresh, alkali-metal-poisoned and Pd-SSZ-13 catalysts 

Calculated based on Gaussian deconvolution and area integral of the NH3-TPD curves. 

Sample Weak acid  Moderate acid Strong acid total acid      

  Pd-Z-F 230.2 149.8 134.9 514.9 

Pd-Z-Na 194.8 36.5 0 231.3 

Pd-Z-K 158.9 28.0 0 186.9 

Pd-Z-Na-R 179.3 67.5 126 372.8 

Pd-Z-K-R 156.8 62.1 113.2 332.1 

 

 

 

 

 

 

 

 

 

 

 

 

 


