

Supporting information

Effect of Dopant Concentration and Ambient Temperature on the Pseudo-capacitance Behavior of Novel Copper Doped Bismuth Layered Double Hydroxide

Muhammad Farooq Rasheed¹, Yasir Altaf¹, Muhammad Ramzan Khawar³, Sajad Hussain^{2},
Najam Ul Hassan², Razan A. Alshgari⁴, Mohamed Ouladsmane⁴, Dongwhi Choi^{3*} Awais ahmad^{4*}*

¹*Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54000, Pakistan.*

²*Department of Physics, Division of Science and Technology, University of Education, Lahore 54000, Pakistan.*

³*Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732 Deogyeong-Daero, Yongin, Gyeonggi, 17104, South Korea*

⁴*Department of Chemistry, P. O. Box 2455, College of Science, King Saud University, Riyadh 11451, Saudi Arabia*

⁵*Department of Chemistry, The University of Lahore, Lahore, Pakistan*

Corresponding author:

Sajad Hussain* (sajad.hussain@ue.edu.pk) dongwhi choi* (dongwhi.choi@khu.ac.kr) Awais ahmad* (awaisahmed@gcuf.edu.pk)

Table S1: Measurement of resistance from EIS data for three electrodes

Electrode	Solution resistance (Ohm)	Charge transfer resistance (Ohm)	Series resistance (Ohm)
UBL	0.29	10.5	10.84
1 % CBL	0.31	4.0	4.31
2.5 % CBL	0.29	3.92	4.21
5 % CBL	0.21	22.12	22.33

Table S2: Comparison of current research with similar materials

Structure	Type	Electro lyte	Energy (Wh kg ⁻¹)	Power (W kg ⁻¹)	References
N, O codoped carbon nanosphere	Symmetric	KOH	6.5	425	[1]
Bi- Oxychloride/Mxe ne	Symmetric	KOH	15.2	567.4	[2]
Bi ₂ O ₃ /Graphite	Asymmetric	KOH	11	720	[3]

Ni-Bismuth LDH	Symmetric	KOH	43	725	[4]
NiCo-LDHs//AC	Asymmetric	KOH	74.37	492	[5]
NiCo-LDHs//CNT	Asymmetric	KOH	36.1	649	[6]
MnO ₂ @CoNi-LDHs//AC	Asymmetric	KOH	40.9	400	[7]
Cu-Bismuth LDH	Symmetric	KOH	65.5	905	This work

Table S3: Measurement of resistance from EIS data for two electrodes at different temperatures

Temperature	Solution resistance (Ohm)	Charge transfer resistance (Ohm)	Series resistance (Ohm)
35	2.25	19.01	21.06
45	2.22	11.12	13.34
55	2.29	70	70.29

1. Hu, M., et al., *Emerging 2D MXenes for supercapacitors: status, challenges and prospects*. Chemical Society Reviews, 2020. **49**(18): p. 6666-6693.
2. Gogotsi, Y. and Q. Huang, *MXenes: two-dimensional building blocks for future materials and devices*. 2021, ACS Publications. p. 5775-5780.
3. Chodankar, N.R., et al., *True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors*. Small, 2020. **16**(37): p. 2002806.
4. Attia, S.Y., et al., *A two-dimensional nickel-doped bismuth-layered double hydroxide structure as a bifunctional efficient electrode material for symmetric supercapacitors*. Sustainable Materials and Technologies, 2023. **36**: p. e00595.
5. Liu, H., et al., *Controlled microstructure in two dimensional Ni-Co LDH nanosheets-crosslinked network for high performance supercapacitors*. Advanced Powder Technology, 2019. **30**(6): p. 1239-1246.
6. Ramachandran, R., et al., *Construction of NiCo-layered double hydroxide microspheres from Ni-MOFs for high-performance asymmetric supercapacitors*. ACS Applied Energy Materials, 2020. **3**(7): p. 6633-6643.
7. Luo, H., et al., *Hierarchical design of hollow Co-Ni LDH nanocages strung by MnO₂ nanowire with enhanced pseudocapacitive properties*. Energy Storage Materials, 2019. **19**: p. 370-378.