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Fig. S1 Sintering curves and the first derivative curves of the sintering curves for (a) GC, (b)
GCZ10, d=2 pm, (c) GCZ10, d=200 nm, (d) GCZ10, d=50 nm samples.
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Fig. S2 Sintering curves and the first derivative curves of the sintering curves for (a) GC, (b)
GCZ20, d=2 pm, (c) GCZ20, d=200 nm, (d) GCZ20, d=50 nm samples.
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Fig. S3 Sintering curves and the first derivative curves of the sintering curves for (a) GC, (b)
GCZ30, d=2 pm, (c) GCZ30, d=200 nm, (d) GCZ30, d=50 nm samples.
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Fig. S4 Sintering curves and the first derivative curves of the sintering curves for (a) GC, (b)
GCZ40, d=2 pm, (c) GCZ40, d=200 nm, (d) GCZ40, d=50 nm samples.
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Fig. S5 Characteristic temperature and shrinkage rate for different mass fraction of (a) 2 um ZrO,
(b) 200 nm ZrO; and (¢) 50 nm ZrO,.
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Fig. S6 Characteristic temperature and shrinkage rate for different particle sizes of (a) GCZ10, (b)
GCZ20, (¢) GCZ30 and (d) GCZ40 samples.
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Fig. S7 DSC Curves obtained at different heating rates (5 °C-min’!, 10 °C-min’!, 15 °C-min’!,
20 °C-min’!) for (a) GC, (b) GCZ10, d=2 pm, (c) GCZ10, d=200 nm, (d) GCZ10, d=50 nm
samples.
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Fig. S8 DSC Curves obtained at different heating rates (5 °C-min’!, 10 °C-min’!, 15 °C-min’!,
20 °C-min’!) for (a) GC, (b) GCZ20, d=2 pm, (¢) GCZ20, d=200 nm, (d) GCZ20, d=50 nm

samples.
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Fig. S9 DSC Curves obtained at different heating rates (5 °C-min’!, 10 °C-min’!, 15 °C-min’!,
20 °C-min™") for (a) GC, (b) GCZ30, d=2 pm, (c) GCZ30, d=200 nm, (d) GCZ30, d=50 nm
samples.
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Fig. S10 DSC Curves obtained at different heating rates (5 °C-min’!, 10 °C-min’!, 15 °C-min’!,
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Fig. S11 Porosity for different mass fraction of (a) 2 pm ZrO;, (b) 200 nm ZrO; and (c¢) 50 nm

ZrOzat 700 °C, 750 °C, and 800 °C.
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Fig. S13 Plots of ln(a / ng) versus 1/T, for different mass fraction of (a) 2 pm ZrO, (b) 200
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Fig. S15 XRD patterns for different mass fraction of (a) 2 um ZrO,, (b) 200 nm ZrO, and (c) 50
nm ZrO; after heat-treatment for 20 hours.
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Fig. S18 Plots of ln(a /(T — To)") versus 1/T,, calculated based on (1) Kissinger model, (2)
Augis-Bennett model and (3) Ozawa model for (a) GC, (b) GCZ20, d=2 pum, (c¢) GCZ20, d=200
nm, (d) GCZ20, d=50 nm samples.
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Fig. S19 Plots of ln(a /(T — To)") versus 1/T,, calculated based on (1) Kissinger model, (2)
Augis-Bennett model and (3) Ozawa model for (a) GC, (b) GCZ30, d=2 pum, (c¢) GCZ30, d=200
nm, (d) GCZ30, d=50 nm samples.
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Fig. S20 Plots of ln(a /(T — To)") versus 1/T,, calculated based on (1) Kissinger model, (2)
Augis-Bennett model and (3) Ozawa model for (a) GC, (b) GCZ40, d=2 pum, (c¢) GCZ40, d=200

nm, (d) GCZ40, d=50 nm samples.
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Fig. S23 Crystallized fraction y as a function of temperature at different heating rates (5 °C-min’
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Fig. S24 Crystallized fraction x as a function of temperature at different heating rates (5 °C-min’
1,10 °C-min’!, 15 °C-min’!, 20 °C-min™") for (a) GCZ30, d=2 um, (b) GCZ30, d=200 nm and (c)
GCZ30, d=50 nm samples.



(a)"* Teczao (b)'? Tecza0 (c)"* eeza0
d=2 ym id=200 nm d=50 nm
=< > =<
c 0.8 c 08 c 08
K] 2 K]
= = =4
[} [¢) (%)
g 0.6 g 0.6 g 0.6
T T -]
[} [} Q
No.a Noas Noa
© © ©
» —5°Cmin" | ® —s5°Cmin' | ® ——5°C-min”
0.2 0.2 0.2
o P o P o P}
——15 °C-min ——15 °C-min ——15°C-min
0.0 ——20°Cmin| o ——20°Cmin| o —— 20 °C-min”!
750 800 850 900 950 1000 1050 750 800 850 900 950 1000 1050 750 800 850 900 950 1000 1050

Temperature (°C)

Temperature (°C)

Temperature (°C)

Fig. S25 Crystallized fraction y as a function of temperature at different heating rates (5 °C-min’
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GCZ40, d=50 nm samples.
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Fig. S27 Plots of In(—In(1 — x)) versus Ina at fixed temperatures determined by Ozawa
equation for (a) GCZ10, d=2 pm, (b) GCZ10, d=200 nm and (c¢) GCZ10, d=50 nm samples.
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Fig. S28 Plots of In(—In(1 — x)) versus Ina at fixed temperatures determined by Ozawa
equation for (a) GCZ20, d=2 pm, (b) GCZ20, d=200 nm and (c¢) GCZ20, d=50 nm samples.
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Fig. S29 Plots of In(—In(1 — x)) versus Ina at fixed temperatures determined by Ozawa
equation for (a) GCZ30, d=2 pm, (b) GCZ30, d=200 nm and (c¢) GCZ30, d=50 nm samples.
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Fig. S30 Plots of In(—In(1 — x)) versus Ina at fixed temperatures determined by Ozawa
equation for (a) GCZ40, d=2 pm, (b) GCZ40, d=200 nm and (c) GCZ40, d=50 nm samples.



Fig. S31 SEM micrographs and related porosity results of GC sintered at (a) 700 °C, (b) 750 °C,
and (c) 800 °C for 2 hours.



Fig. S32 SEM micrographs and related porosity results of GCZ10, d=2 um sintered at (a) 700 °C,
(b) 750 °C, and (c) 800 °C for 2 hours.



Fig. S33 SEM micrographs and related porosity results of GCZ10, d=200 nm sintered at (a) 700
°C, (b) 750 °C, and (c) 800 °C for 2 hours.



Fig. S34 SEM micrographs and related porosity results of GCZ10, d=50 nm sintered at (a) 700 °C,
(b) 750 °C, and (c) 800 °C for 2 hours.



Fig. S35 SEM micrographs and related porosity results of GCZ20, d=2 um sintered at (a) 700 °C,
(b) 750 °C, and (c) 800 °C for 2 hours.



Fig. S36 SEM micrographs and related porosity results of GCZ20, d=200 nm sintered at (a) 700
°C, (b) 750 °C, and (c¢) 800 °C for 2 hours.



Fig. S37 SEM micrographs and related porosity results of GCZ20, d=50 nm sintered at (a) 700 °C,
(b) 750 °C, and (c) 800 °C for 2 hours.



Fig. S38 SEM micrographs and related porosity results of GCZ30, d=2 um sintered at (a) 700 °C,
(b) 750 °C, and (c) 800 °C for 2 hours.



Fig. S39 SEM micrographs and related porosity results of GCZ30, d=200 nm sintered at (a) 700
°C, (b) 750 °C, and (c¢) 800 °C for 2 hours.



Fig. S40 SEM micrographs and related porosity results of GCZ30, d=50 nm sintered at (a) 700 °C,
(b) 750 °C, and (c) 800 °C for 2 hours.



Fig. S41 SEM micrographs and related porosity results of GCZ40, d=2 um sintered at (a) 700 °C,
(b) 750 °C, and (c) 800 °C for 2 hours.



Fig. S42 SEM micrographs and related porosity results of GCZ40, d=200 nm sintered at (a) 700
°C, (b) 750 °C, and (c) 800 °C for 2 hours.



Fig. S43 SEM micrographs and related porosity results of GCZ40, d=50 nm sintered at (a) 700 °C,
(b) 750 °C, and (c) 800 °C for 2 hours.
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Fig. S44 (a) Backscattered SEM micrograph and (b) elemental distribution (EDS mapping) of GC
after heat treatment at 850 °C for 4 hours.



Fig. S45 (a) Backscattered SEM micrograph, (b) elemental distribution (EDS mapping) and (c)
distribution of zirconium of GCZ10, d=2 um after heat treatment at 850 °C for 4 hours.



Fig. S46 (a) Backscattered SEM micrograph, (b) elemental distribution (EDS mapping) and (c)
distribution of zirconium of GCZ10, d=200 nm after heat treatment at 850 °C for 4 hours.



Fig. S47 (a) Backscattered SEM micrograph, (b) elemental distribution (EDS mapping) and (c)
distribution of zirconium of GCZ10, d=50 nm after heat treatment at 850 °C for 4 hours.



Fig. S48 (a) Backscattered SEM micrograph, (b) elemental distribution (EDS mapping) and (c)
distribution of zirconium of GCZ20, d=2um after heat treatment at 850 °C for 4 hours.



Fig. S49 (a) Backscattered SEM micrograph, (b) elemental distribution (EDS mapping) and (c)
distribution of zirconium of GCZ20, d=200 nm after heat treatment at 850 °C for 4 hours.



Fig. S50 (a) Backscattered SEM micrograph, (b) elemental distribution (EDS mapping) and (c)
distribution of zirconium of GCZ20, d=50 nm after heat treatment at 850 °C for 4 hours.



Fig. S51 (a) Backscattered SEM micrograph, (b) elemental distribution (EDS mapping) and (c)
distribution of zirconium of GCZ30, d=2 um after heat treatment at 850 °C for 4 hours.



Fig. S52 (a) Backscattered SEM micrograph, (b) elemental distribution (EDS mapping) and (c)
distribution of zirconium of GCZ30, d=200 nm after heat treatment at 850 °C for 4 hours.



Fig. S53 (a) Backscattered SEM micrograph, (b) elemental distribution (EDS mapping) and (c)
distribution of zirconium of GCZ30, d=50 nm after heat treatment at 850 °C for 4 hours.



Fig. S54 (a) Backscattered SEM micrograph, (b) elemental distribution (EDS mapping) and (c)
distribution of zirconium of GCZ40, d=2 um after heat treatment at 850 °C for 4 hours.



Fig. S55. (a) Backscattered SEM micrograph, (b) elemental distribution (EDS mapping) and (c)
distribution of zirconium of GCZ40, d=200 nm after heat treatment at 850 °C for 4 hours.



Fig. S56 (a) Backscattered SEM micrograph, (b) elemental distribution (EDS mapping) and (c)
distribution of zirconium of GCZ40, d=50 nm after heat treatment at 850 °C for 4 hours.
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Fig. S57 Dilatometric thermograph of 4h and 20h heat-treated GC samples.
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Fig. S58 Dilatometric thermograph of 4h and 20h heat-treated (a) GCZ10, d=2 pum, (b) GCZ10,
d=200 nm and (c) GCZ10, d=50 nm samples.
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Fig. S59 Dilatometric thermograph of 4h and 20h heat-treated (a) GCZ20, d=2 pum, (b) GCZ20,
d=200 nm and (c) GCZ20, d=50 nm samples.
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Fig. S60 Dilatometric thermograph of 4h and 20h heat-treated (a) GCZ30, d=2 pum, (b) GCZ30,
d=200 nm and (c) GCZ30, d=50 nm samples.



0.010 .
(a) —— GCZ40 d=2pm 4h CTE (b) 0-010 ——5¢740 d=200nm 4h CTE
—— GCZ40 d=2pm 20h CTE |—— GCZ40 d=200nm 20h CTE
0.008 0.008
o 0.006  0.006

< <

3 3

T 0.004 T 0.004
0.002 0.002
0.000 0.000 - - - .

0 200 400 600 800 1000 0 200 400 600 800

Temperature (°C)

Temperature (°C)

1000

0.000

|—— GCZ40 d=50nm 4h CTE
—— GCZ40 d=50nm 20h CTE

200 400 600 800
Temperature (°C)

1000

Fig. S61 Dilatometric thermograph of 4h and 20h heat-treated (a) GCZ40, d=2 um, (b) GCZ40,
d=200 nm and (c) GCZ40, d=50 nm samples.



Table S1 The content of each component of GC glass (elements concentration %)

Components SiO; CaO 7ZnO MgO Na,O ALO; SrO K,O TiO;, ZrO,

GC 524 151 9.5 7.6 5.6 3.4 2.6 1.9 1.2 0.6




