

Supplementary Information

Valorization of Cash Crop Waste into a decomposable Nanocellulose adsorbent matrix through Bacterial Cell Factories for the Management of Agricultural Runoff Contaminants

Bendangtula Walling¹, Pranjal Bharali^{1*}, D. Ramachandran², Viswanathan Kanagasabai², Swapnali Hazarika³, Nipu Dutta⁴, Panneerselvam Vengatesh², M. Thangam², Shiva Aley Acharjee¹, Vinita Vishwakarma⁵

¹Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto-798627, Nagaland, India;

²Centre for Nanoscience & Nanotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai-600119, Tamil Nadu, India;

³Chemical Engineering Group, CSIR-North East Institute of Science & Technology, Jorhat-785006, Assam, India;

⁴Department of Chemical Science, Tezpur University, Napaam, Tezpur-784028, Assam, India;

⁵Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, NCR Delhi

*Corresponding Author's mail id: prangenetu@gmail.com

Table of Contents

Sl. No.	Content	Page No.
Experimental		
1	Text S1. Chemicals and Bacterial Strain	2
2	Text S2. Adsorption Capacity and Removal Efficiency Calculations	2
3	Text S3. Biodegradation % Calculation	2
Results and Discussion		
4	Text S4. Adsorption Kinetics Models	2
5	Text S5. Adsorption Isotherm Models	3
6	Text S6. Thermodynamic Equations for Adsorption	3
Supplementary Figures		
7	Figure S1. Waste Sugarcane Molasses	4
8	Figure S2. HPLC chromatogram of WSM sugars	4
9	Figure S3. FE-SEM & FTIR analyses of BNC post-adsorption	5
10	Figure S4. Effect of parameters on adsorption of TC and 2,4-D	6
11	Figure S5. Adsorption kinetics plots	6
12	Figure S6. Adsorption isotherm plots	7
13	Figure S7. FESEM and regeneration study	8
14	Figure S8. Biodegradation study of BNC films	8
Supplementary Tables		
15	Table S1. BNC production in different beaker types	9

16	Table S2. d-spacing and allomorph of BNC from WSM	9
17	Table S3(a). Kinetic parameters for TC and 2,4-D adsorption	9
18	Table S3(b). Isotherm parameters for TC and 2,4-D adsorption	9
19	Table S3(c). Thermodynamic parameters for TC and 2,4-D adsorption	9
20	Table S4. Weight loss and degradation of BNC films	9

Experimental

Text S1. Chemicals and Bacterial Strain

All reagents were of analytical grade and obtained from Hi Media, India. The Hestrin-Schramm (HS) medium consisted of yeast extract (5 g/L), peptone (5 g/L), disodium hydrogen phosphate (2.7 g/L), and citric acid (1.15 g/L). The 2,4-D compound was obtained from Hi Media, India, while TC was acquired from Tokyo Chemical Industry (TCI), India. *Komagataeibacter saccharivorans* NUWB1, previously isolated from decomposed apple, was used in this study.

Text S2. Adsorption Capacity and Removal Efficiency Calculations

Batch adsorption experiments assessed the uptake of 2,4-D and TC. BNC was added to Erlenmeyer flasks containing solutions of defined initial concentrations. Mixtures were agitated at controlled temperatures for specific durations. Parameters such as adsorbent dosage, initial pollutant concentration, contact time, pH, and temperature were systematically varied.

Concentrations of 2,4-D and TC before and after adsorption were measured using a UV-visible spectrophotometer (Shimadzu, Japan) at wavelengths of 282 nm (2,4-D) and 357 nm (TC). Experiments were conducted in triplicate. The adsorption capacity (q_e) and removal efficiency (R%) were calculated as follows:

$$\text{Removal efficiency}(\%) = \frac{C_0 - C_e}{C_0} * 100 \quad \text{Eqn. (1)}$$

$$q_e = \frac{(C_0 - C_e)}{m} * V \quad \text{Eqn. (2)}$$

where C_0 is the concentration of the initial pollutant (mg L^{-1}), C_e is the equilibrium concentration of the pollutant, m represents the mass (g) of the adsorbent, and $V(\text{L})$ represents the volume of the adsorbate solution.

Text S3. Biodegradation % Calculation

$$\text{Biodegradation \%} = \frac{W_1 - W_2}{W_1} * 100 \quad \text{Eqn. (3)}$$

W_1 signifies the initial weight of the film, and W_2 signifies its final weight of post-degradation.

Results and Discussion

Text S4. Adsorption Kinetics Models

The Lagergren pseudo-first-order (PFO) model, originally proposed by Lagergren, is represented by Eqn (4):

$$\text{Log} (q_e - q_t) = \text{log} q_e - k_{1t} \quad \text{Eqn. (4)}$$

The variable k_1 represents the rate constant for the pseudo-first-order, and t indicates the duration of contact time.

The Ho pseudo-second-order (PSO) kinetic model is shown in Eqn (5):

$$\frac{1}{q_t} = \frac{1}{k_2 q_e} + \frac{t}{q_e} \quad \text{Eqn. (5)}$$

where k_2 is the pseudo-second-order adsorption rate constant

Text S5. Adsorption Isotherm Models

The Langmuir isotherm is given by Eqn (6):

$$\text{Langmuir isotherm: } \frac{C_e}{q_e} = \frac{1}{Q_{max} K_L} + \frac{1}{Q_{max}} C_e \quad \text{Eqn. (6)}$$

C_e (mg L⁻¹) represents the concentration of the adsorbate in the solution at equilibrium, q_e (mg/g) represents the amount of adsorbate adsorbed at equilibrium, q_{max} (mg/g) represents the monolayer adsorption capacity, K_L represents the equilibrium adsorption constant

The Freundlich isotherm is given by Eqn (7):

$$\text{Freundlich isotherm: } \log q_e = \frac{1}{n_F} (\log C_e) + \log K_F \quad \text{Eqn. (7)}$$

here K_F represents the Freundlich constant, n represents the intensity of the adsorption.

The Temkin isotherm is given by Eqn (8):

$$\text{Temkin isotherm: } q_e = \frac{RT}{B_T} \ln(A_T C_e) \quad \text{Eqn. (8)}$$

Here, the variation in adsorption energy is Q (J mol⁻¹), and the Temkin constant is KT (L mg⁻¹).

Text S6. Thermodynamic Equations for Adsorption

The values of ΔH° and ΔS° were derived from the slope and intercept of the van't Hoff plot of $\ln K_d$ versus $1/T$ for the highest initial concentration of TC and 2,4-D using the expression given in Eqn (9).

$$\ln K_d = \frac{\Delta S^\circ}{R} - \frac{\Delta H^\circ}{RT} \quad \text{Eqn. (9)}$$

where K_d denotes the dimensionless equilibrium distribution coefficient, R (8.314 J/mol K) denotes the universal gas constant and T (K) denotes the absolute temperature. The values of ΔG° were calculated from Eqn (10).

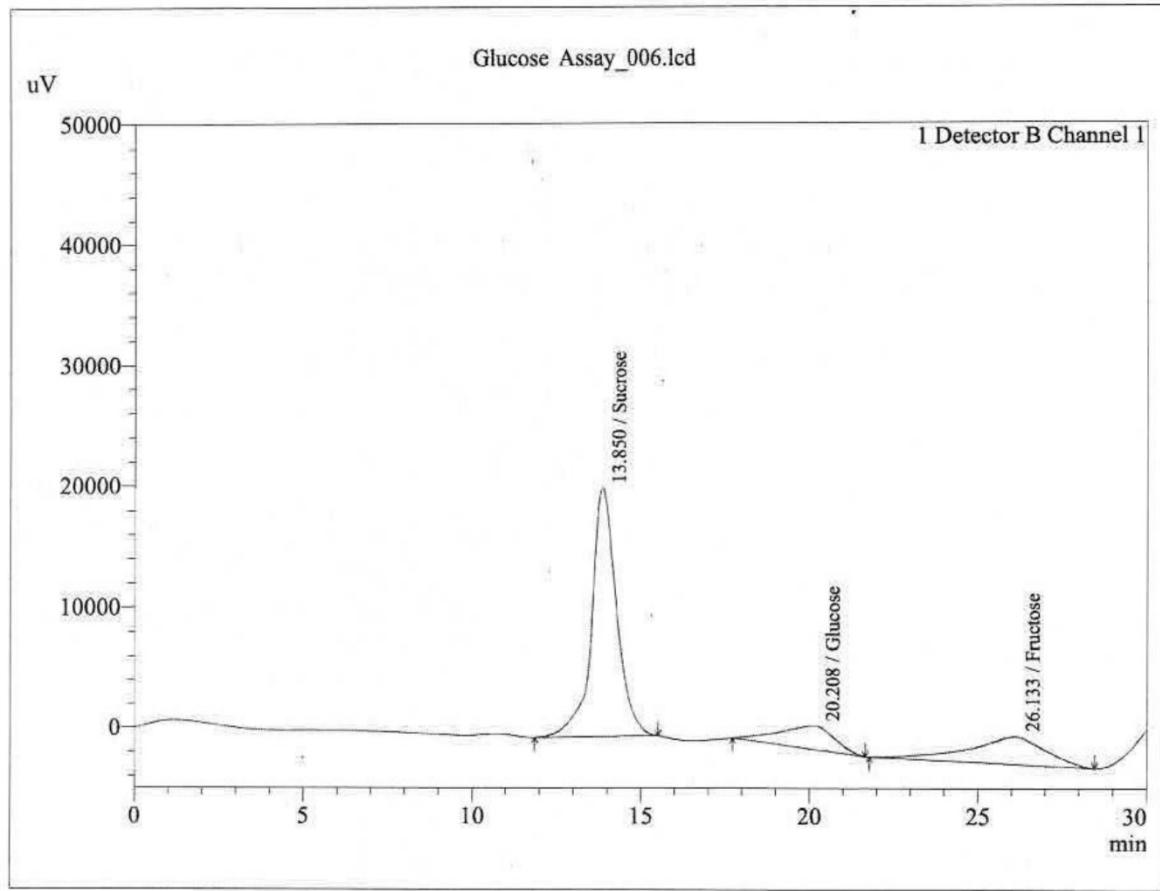
$$\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \quad \text{Eqn. (10)}$$

Using equations 10 and 11, K_d and ΔG° were determined.

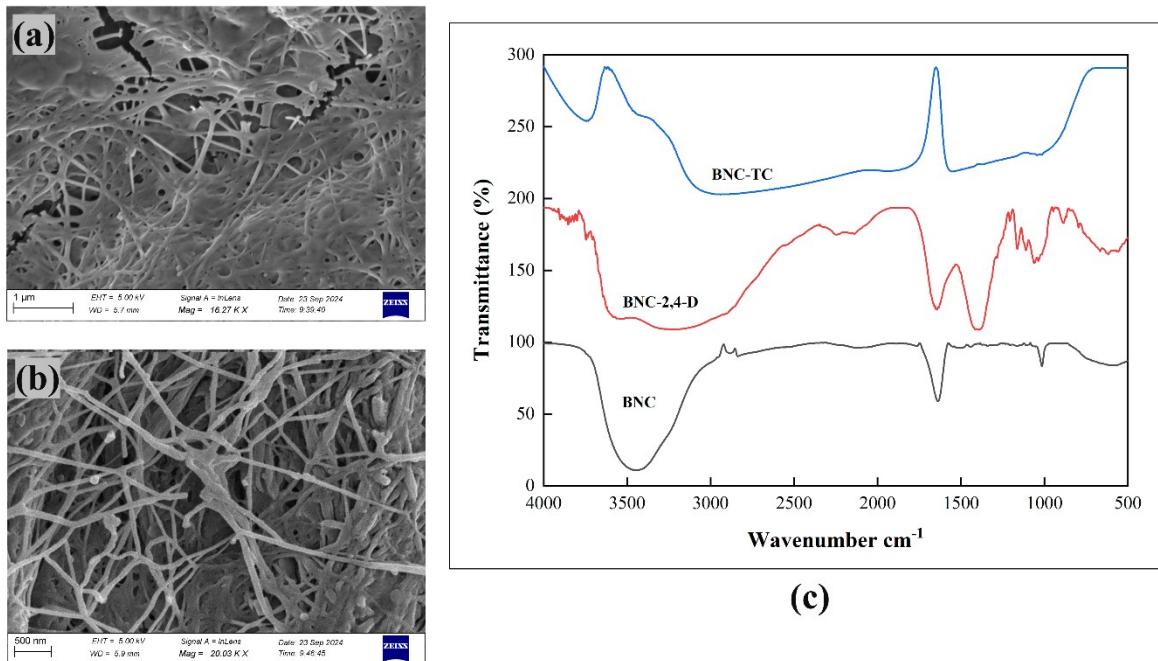
$$K_d = \frac{q_e}{C_e} \quad \text{Eqn. (11)}$$

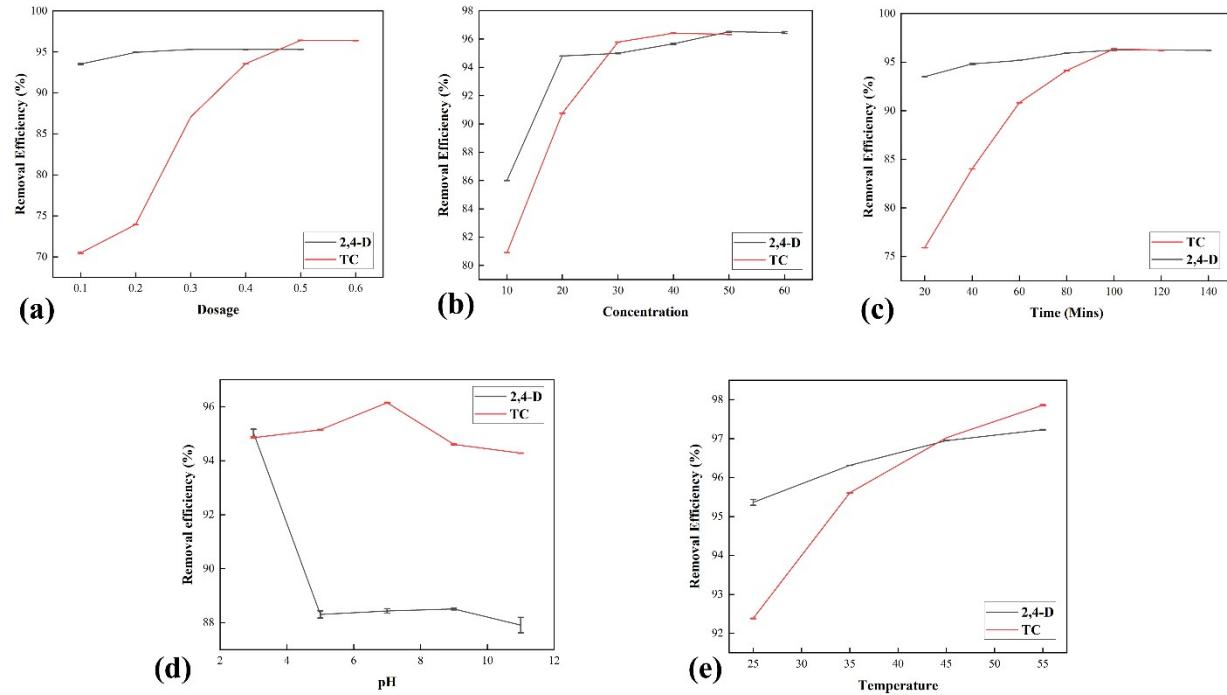
$$\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \quad \text{Eqn. (12)}$$

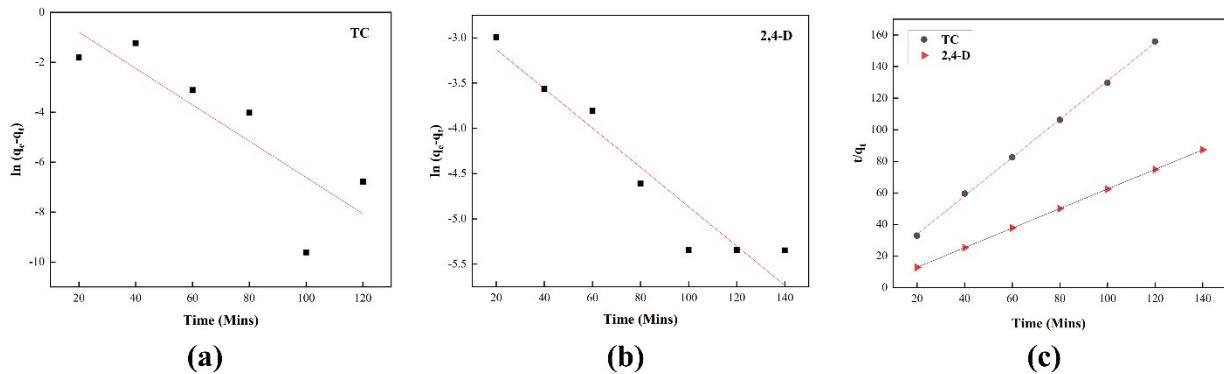
K_d represents the distribution coefficient, q_e is the amount of adsorbate retained by the adsorbent per litre of solution at equilibrium, C_e is the equilibrium concentration of the adsorbate in the solution, R denotes gas constant (8.314 JK⁻¹

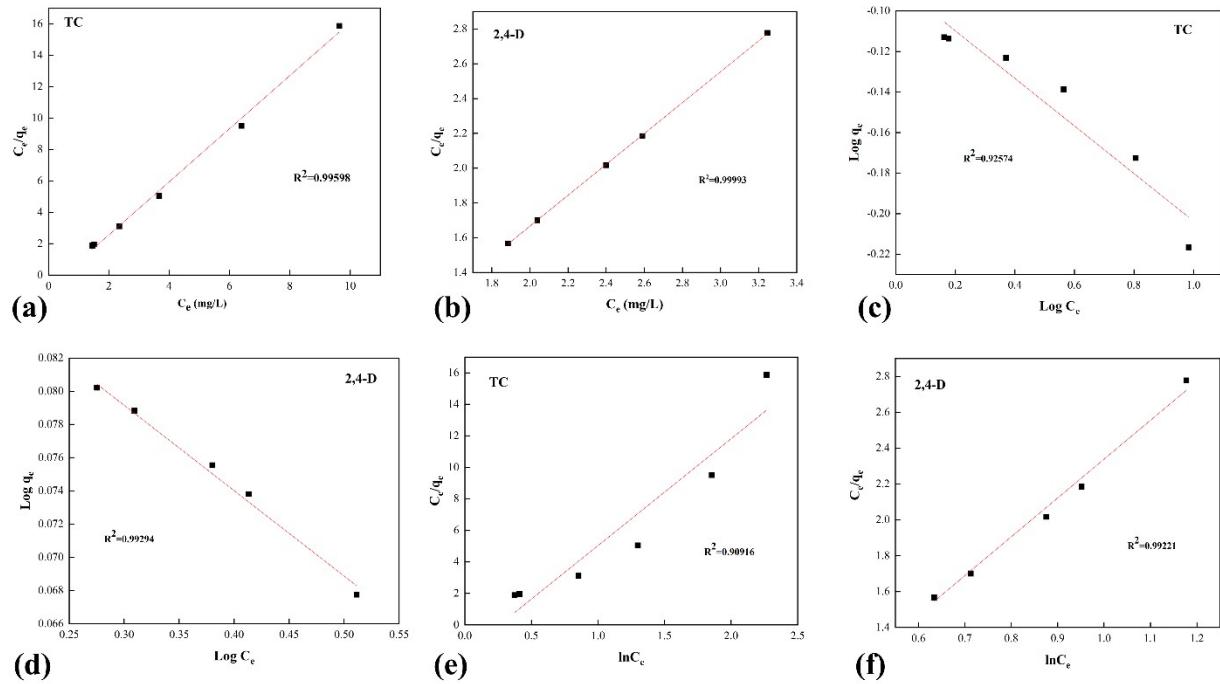

$^1\text{mol}^{-1}$), and T is the absolute temperature. ΔH° and ΔS° were computed using the graph that plotted $\ln (K_d)$ against $1/T$.

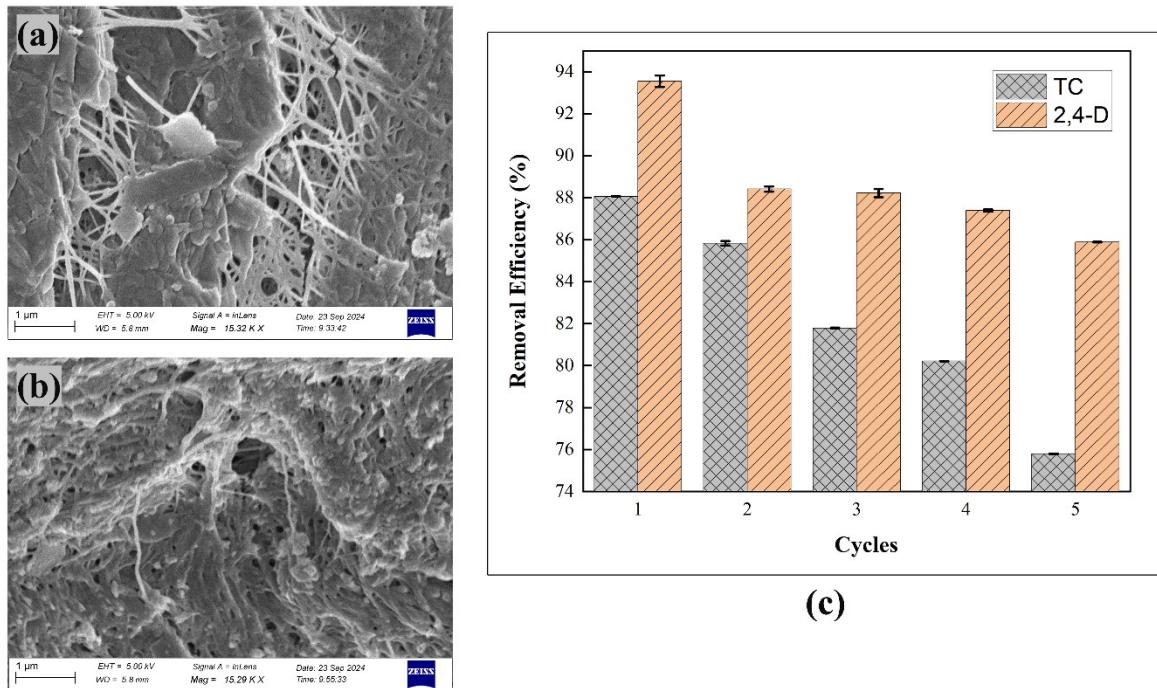
Supplementary Figures

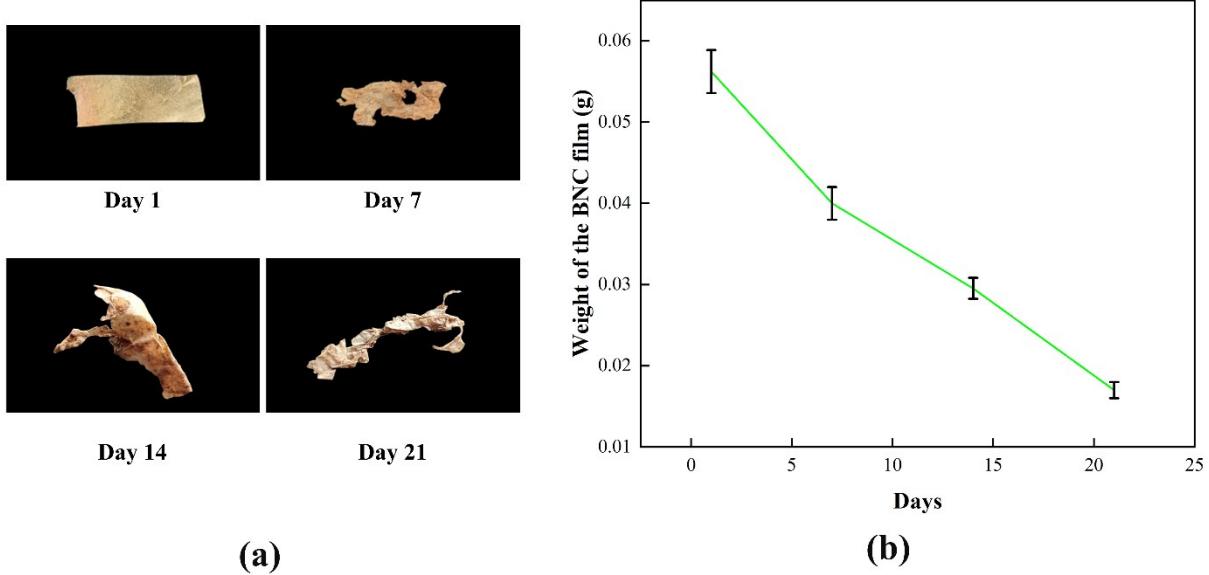

- **Figure S1. Waste Sugarcane Molasses.**


- **Figure S2. HPLC chromatogram showing glucose, fructose, and sucrose in WSM.**


- Figure S3. FE-SEM images of BNC post-adsorption of (a) TC, (b) 2,4-D, and (c) FTIR spectra pre- and post-adsorption.


- **Figure S4.** Effects of (a) dosage, (b) initial concentration, (c) time, (d) pH, and (e) temperature on adsorption of TC and 2,4-D by BNC.


- **Figure S5.** (a) and (b) Pseudo-first-order for TC and 2,4-D and (c) pseudo-second-order kinetic plots for TC and 2,4-D.


- **Figure S6.** Langmuir, Freundlich, and Temkin isotherms for TC and 2,4-D adsorption.

- Figure S7. FE-SEM images of BNC after desorption of (a) TC, (b) 2,4-D, and (c) BNC regeneration cycles.

- **Figure S8. (a) Morphological changes in BNC films over 21 days of soil burial, and (b) weight loss during degradation.**

Supplementary Tables

Table S1. Comparison of BNC production in different beaker types and broth volumes

Beaker Volume (mL)	Culture Volume (mL)	Surface Area (cm ²)	Depth (cm)	S/V Ratio (cm ⁻¹)	BNC Production (g)
500	300	349	6.2	1.6	3.279 ± 0.023
500	200	349	4.1	2.69	3.085 ± 0.09
250	200	220	5.6	1.1	1.621 ± 0.014
250	100	220	3.2	2.2	1.77 ± 0.063

Table S2. d-Spacing and Dominant Allomorph of BNC Synthesized from WSM

Bacterium	Carbon Substrate	d ₁ (nm)	d ₂ (nm)	d ₃ (nm)	Dominant Allomorph
K. saccharivorans NUWB1	WSM	0.601	0.515	0.385	I α

Table S3(a). Kinetic Parameters for Adsorption of TC and 2,4-D onto BNC

Adsorbate	Model	q _e (exp)	q _e (cal)	k	R ²
TC	Pseudo-1st Order	0.771	1.51	0.000727	0.72
TC	Pseudo-2nd Order	0.771	0.824	0.07	0.99
2,4-D	Pseudo-1st Order	1.608	0.3713	0.00018	0.91
2,4-D	Pseudo-2nd Order	1.608	1.614	5.1379	0.99

Table S3(b). Adsorption Isotherm Parameters for TC and 2,4-D on BNC

Adsorbates	Langmuir		Freundlich		Temkin
	q _{max} (mg g ⁻¹)	K _L	K _F	1/n	b _T
TC	q _{max} (mg g ⁻¹) = 1.22		K _F = 2.44		b _T = 6.7869
		K _L = 0.072		1/n = 8.524	K _T = 1.2944
		R ² = 0.995		R ² = 0.92	R ² = 0.90
2,4-D	q _{max} (mg g ⁻¹) = 9.3057		K _F = 1.24		b _T = 2.16528
		K _L = 10.488		1/n = 19.447	K _T = 1.08344
		R ² = 0.99993		R ² = 0.99294	R ² = 0.99065

Table S3(c). Thermodynamic Parameters for Adsorption of TC and 2,4-D

Adsorbate	ΔH° (kJ/mol)	ΔS° (kJ/mol)	ΔG° (kJ/mol)			
			298(K)	308(K)	318(K)	328(K)
TC	35.916	0.10917	-32.5246	-33.6163	-34.708	-35.7997
2,4-D	14.681	0.04633	-13.129	-13.5924	-14.0558	-14.5192

Table S4. Weight Loss and Biodegradation of BNC Films

Day	Film Weight (g)	BNC Degradation (%)

1	0.056 ± 0.0026	0
7	0.04 ± 0.003	40.58
14	0.029 ± 0.0012	47.48
21	0.017 ± 0.001	69.76