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Fig.S1. Zeta Potential of PAR-Mg/Al LDH

Table S1: Remediation of various anionic dyes using MgAl LDHS and/or organic
compounds prepared through different reported methods.

Adsorbent Target dye Qe (mg/g) Ref

LDH modified with Methyl Orange (MO) 416.7 !
anionic surfactant
(SDS-templated)

Mg-Al LDH Methyl Orange 148.3 2
(hydrothermal) —
baseline study on

anionic dye

MgAl-LDH Methylene orange 197.62 3
MgAl-Charcoal direct yellow 133.33 4
activated
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Pure Mg/Al-LDH Reactive Brilliant ~79-83 3

Orange X-GN
CoAl-LDH Acid fuchsin 384.62 6
PAR-Mg/Al LDH Acid fuchsin 568.18 Present work
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Fig.S2. (A) The adsorption capacity of PAR-Mg/Al LDH as a function of contact time; (B)
PSO kinetic model; (C) PFO kinetic model.

S1. Intraparticle Diffusion Model (Weber—Morris Model)
The Weber—Morris intraparticle diffusion model was applied to examine whether the adsorption

process was controlled by film diffusion, intraparticle diffusion, or a combination of multiple
steps, according to Eq. (1) 7.

G = Kg t2 + C (1)
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In this model, ki; (mg g h™°-%) represents the intraparticle diffusion rate constant, and C is a
constant related to the thickness of the boundary layer. If intraparticle diffusion is involved in the
adsorption process, a plot of q; versus t'/? should yield a linear relationship. Furthermore, if
intraparticle diffusion is the sole rate-limiting step, the plot should pass through the origin. The
intercept C provides insight into the contribution of external mass transfer resistance, where
higher C values indicate a greater boundary layer effect.
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Fig. S3. Intraparticle diffusion plots for the adsorption of Acid Fuchsin on PAR-Mg/Al
LDH.

S2. Boyd Kinetic Model:
To further distinguish between film diffusion and intraparticle diffusion as the rate-limiting step,

the Boyd kinetic model was employed and is expressed by Eq. (2) ®.

F=1- L exp(1-Bt) (2)

2

In this model, F represents the fractional attainment of equilibrium at time ¢, and B, is a function
of F.

F= 0/ (3)

Where q; and geare the dye uptake (mmol g-!) at time t and at equilibrium, respectively.
Eq. (2) can be rearranged to Eq. (4).°

B; = -0.4977-In (1-F) (4)
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Fig. S4. Boyd plot (Bt versus t) for the adsorption of Acid Fuchsin on PAR-Mg/Al LDH.
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Fig.S5.Effect of interfering anions on acid fuchsin dye adsorption onto PAR-Mg/Al LDH.

Table S2. The docking interaction parameters of acid fuchsin with 7JWY: VIRAL PROTEIN /
7JIWYCOVID -19.

Ligand Receptor  Interaction  Distance E
(Kcal/mol)
Shape NI13 16 O ASP 364 H-donor 3.22 -2.1
A (A)
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Ol12 15 N PHE 338 H-acceptor 3.38 -1.2

(A)
Shape  NI13 16 CYC 336 H-donor 3.13 -0.7
B O (A)
012 15 PHE 338  H-acceptor 3.05 -0.7
N (A)
O12 15 GLY 339 H-acceptor 3.03 -4.4
N (A)
6-ring PHE 338 pi-H 4.04 -0.6
CB (A)
S rmsd E conf E place E scorel E refine E score2
1 - 1.2215178 - - - - -
5.83096695 145.591721 89.7915039 8.36091042 29.4026527 5.83096695
2 - 1.69807434 - - - - -
5.69000053 143.553314 78.6248703 8.49876308 28.8788357 5.69000053
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