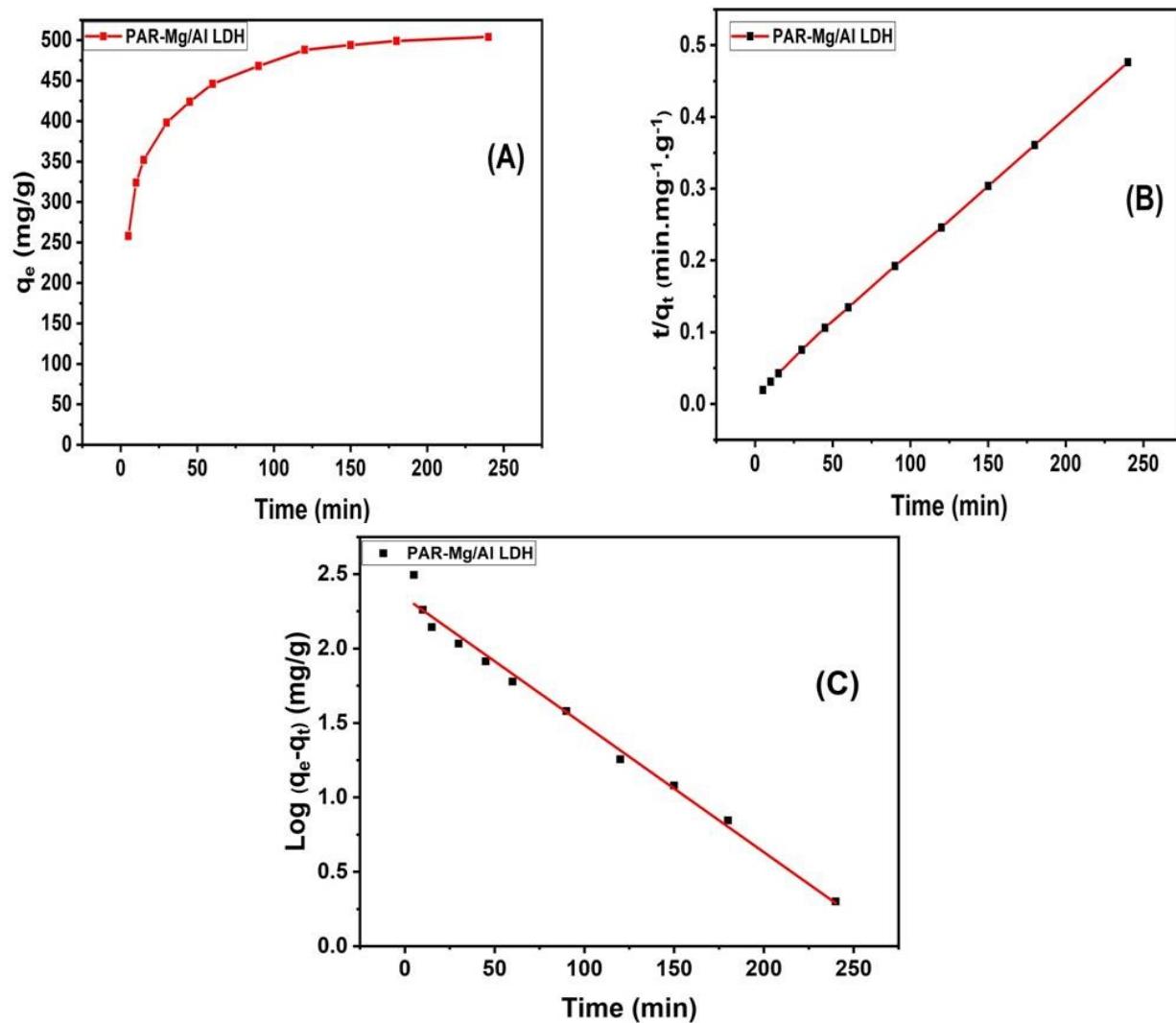



**PAR-intercalated Mg/Al layered double hydroxide for efficient adsorption of Acid Fuchsin: experimental study and molecular docking insights**

Sara E Abdel Hameed<sup>1</sup>, Weam M. Abou El-Maaty<sup>1</sup>, Esam A. Gomaa<sup>1</sup>, Fathi S. Awad<sup>1,\*</sup>

Chemistry Department Faculty of Science, Mansoura University, Mansoura, Egypt

**Supporting Information**




**Fig.S1.** Zeta Potential of PAR-Mg/Al LDH

**Table S1:** Remediation of various anionic dyes using MgAl LDHS and/or organic compounds prepared through different reported methods.

| Adsorbent                                                       | Target dye         | Q <sub>e</sub> (mg/g) | Ref          |
|-----------------------------------------------------------------|--------------------|-----------------------|--------------|
| <b>LDH modified with anionic surfactant (SDS-templated)</b>     | Methyl Orange (MO) | 416.7                 | <sup>1</sup> |
| <b>Mg-Al LDH (hydrothermal) — baseline study on anionic dye</b> | Methyl Orange      | 148.3                 | <sup>2</sup> |
| <b>MgAl-LDH</b>                                                 | Methylene orange   | 197.62                | <sup>3</sup> |
| <b>MgAl-Charcoal activated</b>                                  | direct yellow      | 133.33                | <sup>4</sup> |

|                |                                |                 |                     |
|----------------|--------------------------------|-----------------|---------------------|
| Pure Mg/Al-LDH | Reactive Brilliant Orange X-GN | $\approx 79-83$ | 5                   |
| CoAl-LDH       | Acid fuchsin                   | 384.62          | 6                   |
| PAR-Mg/Al LDH  | Acid fuchsin                   | <b>568.18</b>   | <b>Present work</b> |



**Fig.S2.** (A) The adsorption capacity of PAR-Mg/Al LDH as a function of contact time; (B) PSO kinetic model; (C) PFO kinetic model.

### S1. Intraparticle Diffusion Model (Weber–Morris Model)

The Weber–Morris intraparticle diffusion model was applied to examine whether the adsorption process was controlled by film diffusion, intraparticle diffusion, or a combination of multiple steps, according to Eq. (1)<sup>7</sup>.

$$q_t = K_{id} t^{1/2} + C \quad (1)$$

In this model,  $k_{id}$  (mg g<sup>-1</sup> h<sup>-0.5</sup>) represents the intraparticle diffusion rate constant, and  $C$  is a constant related to the thickness of the boundary layer. If intraparticle diffusion is involved in the adsorption process, a plot of  $q_t$  versus  $t^{1/2}$  should yield a linear relationship. Furthermore, if intraparticle diffusion is the sole rate-limiting step, the plot should pass through the origin. The intercept  $C$  provides insight into the contribution of external mass transfer resistance, where higher  $C$  values indicate a greater boundary layer effect.

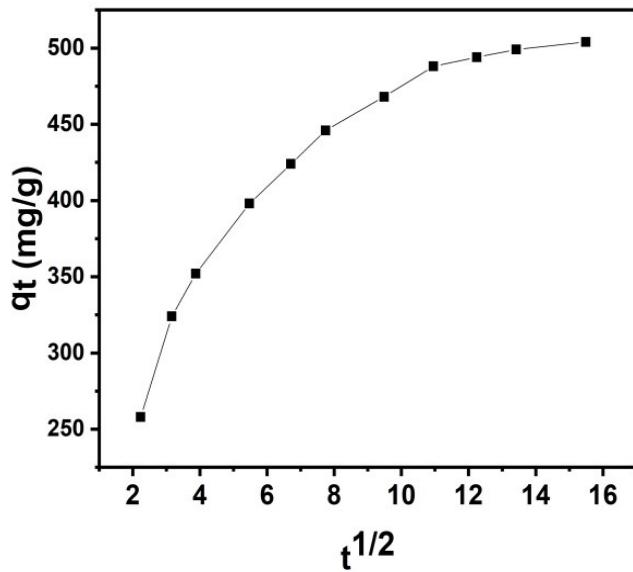



Fig. S3. Intraparticle diffusion plots for the adsorption of Acid Fuchsin on PAR-Mg/Al LDH.

## S2. Boyd Kinetic Model:

To further distinguish between film diffusion and intraparticle diffusion as the rate-limiting step, the Boyd kinetic model was employed and is expressed by Eq. (2)<sup>8</sup>.

$$F = 1 - \frac{6}{\pi^2} \exp(-B_t t) \quad (2)$$

In this model,  $F$  represents the fractional attainment of equilibrium at time  $t$ , and  $B_t$  is a function of  $F$ .

$$F = q_t/q_e \quad (3)$$

Where  $q_t$  and  $q_e$  are the dye uptake (mmol g<sup>-1</sup>) at time  $t$  and at equilibrium, respectively. Eq. (2) can be rearranged to Eq. (4).<sup>9</sup>

$$B_t = -0.4977 - \ln(1-F) \quad (4)$$

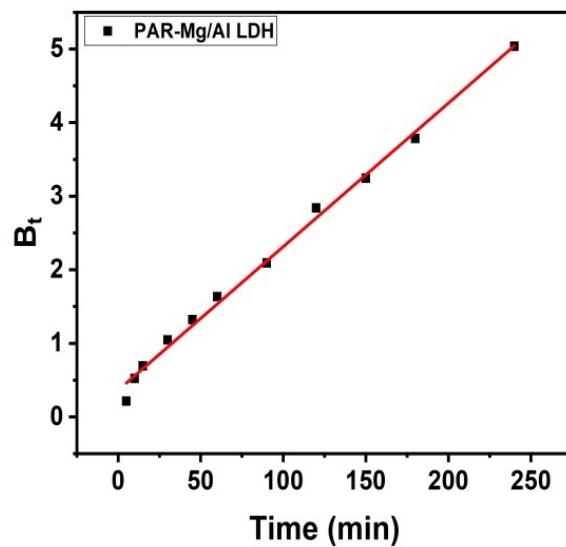
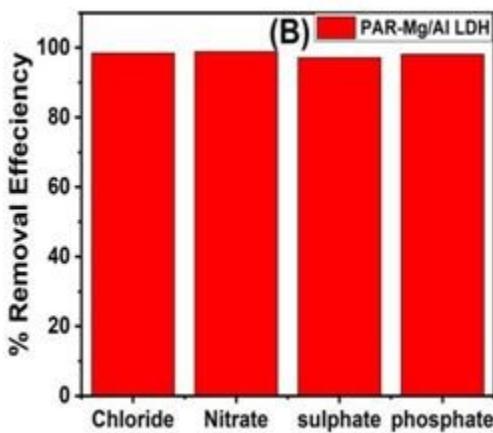




Fig. S4. Boyd plot ( $B_t$  versus  $t$ ) for the adsorption of Acid Fuchsin on PAR-Mg/Al LDH.



**Fig.S5.**Effect of interfering anions on acid fuchsin dye adsorption onto PAR-Mg/Al LDH.

**Table S2.** The docking interaction parameters of acid fuchsin with 7JWY: VIRAL PROTEIN / 7JWYCOVID -19.

| Ligand              | Receptor       | Interaction | Distance | E<br>(Kcal/mol) |
|---------------------|----------------|-------------|----------|-----------------|
| Shape N13 16 O<br>A | ASP 364<br>(A) | H-donor     | 3.22     | -2.1            |

|       |            |    |   |            |            |                   |            |            |
|-------|------------|----|---|------------|------------|-------------------|------------|------------|
|       | O12        | 15 | N | PHE        | 338        | H-acceptor<br>(A) | 3.38       | -1.2       |
| Shape | N13        | 16 |   | CYC        | 336        | H-donor<br>(A)    | 3.13       | -0.7       |
| B     |            | O  |   |            |            |                   |            |            |
|       | O12        | 15 | N | PHE        | 338        | H-acceptor<br>(A) | 3.05       | -0.7       |
|       | O12        | 15 | N | GLY        | 339        | H-acceptor<br>(A) | 3.03       | -4.4       |
|       | 6-ring     |    |   | PHE        | 338        | pi-H              | 4.04       | -0.6       |
|       | CB         |    |   |            |            |                   |            |            |
|       | S          |    |   | rmsd       |            | E_conf            | E_place    | E_score1   |
| 1     | -          |    |   | 1.2215178  |            | -                 | -          | E_refine   |
|       | 5.83096695 |    |   |            | 145.591721 | 89.7915039        | 8.36091042 | 29.4026527 |
| 2     | -          |    |   | 1.69807434 | -          | -                 | -          | -          |
|       | 5.69000053 |    |   |            | 143.553314 | 78.6248703        | 8.49876308 | 28.8788357 |
|       |            |    |   |            |            |                   |            | 5.69000053 |

## References

1. X. Zhang, M. Xiang, Z. Zhu, Y. Zou and P. Zhang, *Clay Minerals*, 2021, **56**, 169-177.
2. L. Ai, C. Zhang and L. Meng, *Journal of Chemical & Engineering Data*, 2011, **56**, 4217-4225.
3. A. Zaghloul, R. Benhiti, A. Ait Ichou, G. Carja, A. Soudani, M. Zerbet, F. Sinan and M. Chibani, *Materials Today: Proceedings*, 2021, **37**, 3793-3797.
4. N. Ahmad, F. S. Arsyad, I. Royani and A. Lesbani, *Results in Chemistry*, 2023, **5**, 100766.
5. P. Wu, Q. Zhang, Y. Dai, N. Zhu, P. Li, J. Wu and Z. Dang, *Clays and Clay Minerals*, 2011, **59**, 438-445.
6. Z. Meguellati, N. Ghemmrit-Doulache and R. Brahimi, *Inorganic Chemistry Communications*, 2023, **157**, 111226.
7. W. J. Weber Jr and J. C. Morris, *Journal of the sanitary engineering division*, 1963, **89**, 31-59.
8. G. Boyd, A. Adamson and L. Myers Jr, *Journal of the American Chemical Society*, 1947, **69**, 2836-2848.
9. D. Reichenberg, *Journal of the American Chemical Society*, 1953, **75**, 589-597.