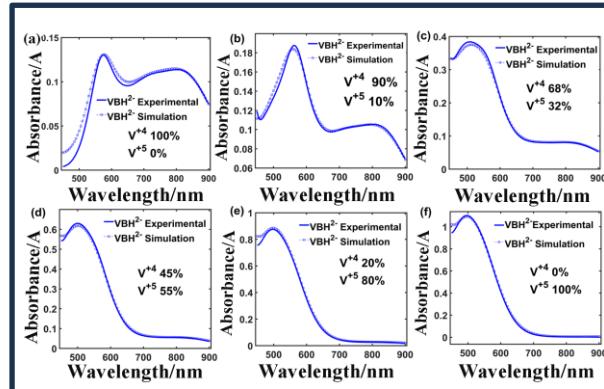


Supplementary Information

Fine-Tuning the Indirect Electrochemical Reaction in Redox-Mediated Flow Batteries

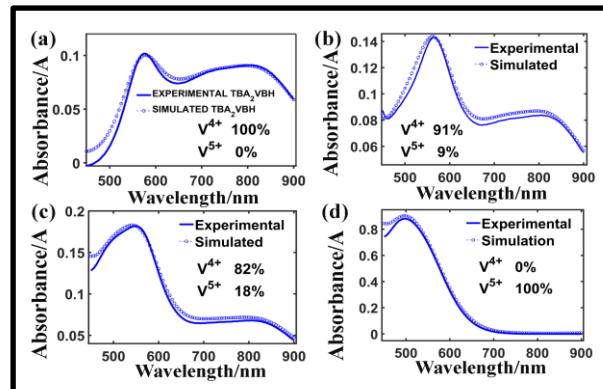
*Tulsi M. Poudel,¹ Daphne E. Poirier,¹ Marybeth Hope T. Banda,¹ Eylul Ergun,² Daniel Rourke,² Kayode O. Ojo,¹ Ertan Agar,² Maricris L. Mayes,¹ Patrick J. Cappillino^{*1}*

AUTHOR ADDRESS

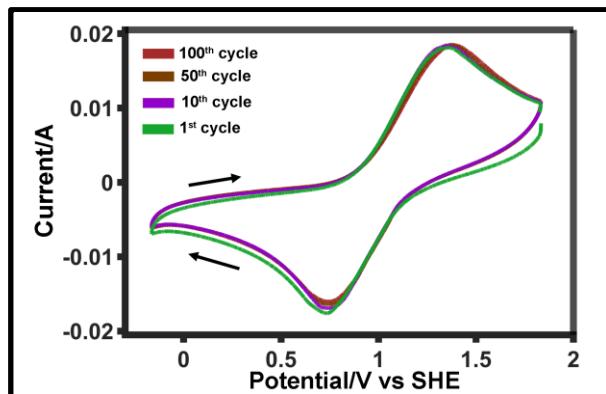

1. Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, United States
2. Mechanical Engineering Department, Energy Engineering Graduate Program, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States

Corresponding Author

***Patrick J. Cappillino**
Department of Chemistry and Biochemistry
University of Massachusetts Dartmouth
Dartmouth, MA 02747


Section 1: Experimental and Simulated UV-VIS spectra of VBH^{2-} oxidation

The UV-VIS spectra of the change in the oxidation state of the VBH^{2-} spectra was taken by measuring the change in epsilon value of each wavelength of the VBH^{2-} upon addition of the equivalent amount of the CoHCF and gradual addition of K^+ ion as KPF_6 salt from 0, 0.25, 0.5, 0.75 and 1 equivalent (see Fig. S1). For VBH^{2-} , $\epsilon(825 \text{ nm})=25.0 \text{ mol}^{-1} \text{ cm}^{-1}$, and that for VBH^{1-} , $\epsilon(485 \text{ nm})=245 \text{ mol}^{-1} \text{ cm}^{-1}$ was used.¹


Figure S1. $\text{VBH}^{2-/1-}$ Oxidation. (a). UV-vis spectra of VBH^{2-} (b). After addition of full equivalent of CoHCF with no KPF_6 . (c). 0.25 KPF_6 (d). 0.5 KPF_6 (e). 0.75 KPF_6 (f). 1 KPF_6

Similarly, the UV-VIS spectra of the change in the oxidation state of the VBH^{2-} was taken by measuring the change in epsilon value of each wavelength of the VBH^{2-} upon addition of the same equivalent of the CoHCF and the cations (TBA^+ , TMA^+ , & K^+) corresponding to its PF_6^- salts (see Fig. S2)

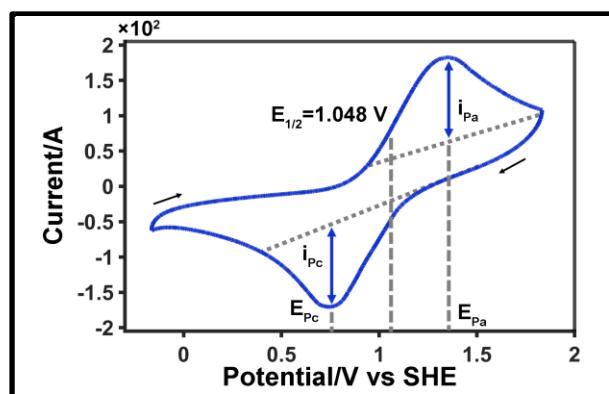


Figure S2. $\text{VBH}^{2-/1-}$ Oxidation. (a). UV-vis spectra of VBH^{2-} (b). After addition of full equivalent of CoHCF and TBAPF_6 . (c). Adding Full equivalents of CoHCF and TMAPF_6 (d). After addition of full equivalents of CoHCF and KPF_6

Section 2: CV Analysis of CoHCF following addition of 0.2M TBAPF₆+ 0.2M KPF₆ Addition in MeCN

Figure S3. a) CV of CoHCF done for 100 cycles coated on carbon rod in 6:1:3 ratio of CoHCF, MWCNT, & PVDF in NMP. 0.2M TBAPF₆ and 0.2M KPF₆ were used as electrolyte solution in MeCN. Scan rate was 0.05 V/s.

Figure S3. b) CV of CoHCF coated on carbon rod in 6:1:3 ratio of CoHCF, MWCNT, & PVDF in NMP. 0.2M TBAPF₆ and 0.2M KPF₆ were used as electrolyte solution in MeCN. Scan rate was 0.05 V/s. dEp value calculated as 0.60 V and the anodic to cathodic peak current ratio as 0.97.

REFERENCE

(1) Pahari, S. K.; Gokoglan, T. C.; Chaurasia, S.; Bolibok, J. N.; Golen, J. A.; Agar, E.; Cappillino, P. J. Toward High-Performance Nonaqueous Redox Flow Batteries through Electrolyte Design. *ACS Appl. Energy Mater.* **2023**, 6 (14), 7521–7534. <https://doi.org/10.1021/acsaem.3c00910>.