

SUPPLEMENTARY DATA

**Biochar for Pollution Mitigation and Renewable Energy Applications
toward Sustainability Development**

Table S1. Characteristics, advantages, and disadvantages of the pyrolysis process

Pyrolysis	Characteristics	Advantages	Disadvantages	Ref.
Slow pyrolysis	<ul style="list-style-type: none">Temperature: 300–700°CResidence time: <2 sYield of biochar: 35%	<ul style="list-style-type: none">High yieldStable and rigid structureHigh porosityCost-efficientBiomass diversity	<ul style="list-style-type: none">Long residenceLow energy productTime-consumingFeedstock preparationEmissions release	[1]
Fast pyrolysis	<ul style="list-style-type: none">Temperature: 500–1000 °CResidence time: hour-dayYield of biochar: 12%	<ul style="list-style-type: none">Short residenceHigh carbon contentHigh porosityRapid processBiomass diversity	<ul style="list-style-type: none">Energy requirementLow biochar yieldEmission control requirement	[2, 3]
Catalytic pyrolysis	<ul style="list-style-type: none">The presence of selective catalysts<ul style="list-style-type: none">Common catalysts: metal oxides, mesoporous solid catalysts, noble metal catalysts, molecular sieve catalysts, etc.	<ul style="list-style-type: none">Short durationQuick heating and pyrolysis of the materialHigher energy savingHigh-quality pyrolysis productImproved the conversion rate	<ul style="list-style-type: none">Need catalyst supportCost of catalysts (e.g., precious metals)Technical complexityFeedstock sensitivity	[4, 5]

Hydrothermal carbonization	<ul style="list-style-type: none"> • Temperature: 180–300°C • Residence time: 1–16 h • Yield of biochar: 50–80% 	<ul style="list-style-type: none"> • Effective method • It can operate at low temperatures • High surface functionality • Potential energy generation 	<ul style="list-style-type: none"> • Required pressurized, expensive (high-cost), and complex systems • Feedstock limitations • High energy input 	[6-8]
----------------------------	--	---	--	-------

Table S2. The feature characteristics of biochar synthesized in various sources [9]

Parameters	Feedstocks			
	Aquatic	Plant	Manure	Municipal solid
Features	Protein, lignocellulose, more inorganic compositions, and water	Lignocellulose, numerous quantities, broad distribution space	High nutrients (N, P, and K), more inorganic compositions.	Heavy metal appearance, moisture
Yield biochar	High	Low	High	High
Density	-	Small	Middle	High
Pore morphology	High porosity	Long structure	Honey-comb structure	Layers or sheets structure
Cation exchange capacity	Low	High	Low	Low
pH value	Rising with high temperature			
Specific surface area	Low	High	Low	Low
Porosity	400-700 °C ranges have high lignin – low ash compositions and outstanding porosity.			
	Rising with high temperature as temperature < 800 °C			

Table S3. Physiochemical characterizations of various biochars

Feedstocks	Temp (°C)	Physical			Chemical				Ref.
		Electrical conductivity (dS m ⁻¹)	SSA (m ² g ⁻¹)	Pore size (nm)	pH	C/N	O/C	H/C	
Digestate	400	4.5	4	10	10.6	23.5	0.23	0.68	28.7 [10]
Pepper stalk	600	0.16	71.3	3.2	10.8	32.9	0.09	0.32	10.6 [11]
Sewage sludge	300	-	57.7	-	6.5	8	0.19	0.12	- [12]
Pine sawdust		650	-	130	-	9.6	260	-	0.05 - [13]
Bamboo	200	-	9.3	14.8	5.18	133	0.67	0.11	0.95 [14]
Activated sludge	500	0.47	41.8	-	8.01	5.49	-	0.07	66.5 [15]
Rice husk	600	-	-	-	9.45	77.4	0.26	0.61	27.6 [16]
Fruitwood	900	-	-	-	8.63	208	0.07	0.47	5.49 [17]

Table S4. Capacitive deionization performance of biochar-based materials under different CDI architectures.

Architecture	Concentration	Material	SAC (mg/g)	CE (%)	Remarks	Ref.
Traditional	160 $\mu\text{S cm}^{-1}$ NaCl	Chitin-derived biochar	11.4	87.2	26.5 mg g^{-1} at 500 $\mu\text{S cm}^{-1}$	[18]
	10 mM NaCl	Algae-derived biochar	8.7	75	Higher SAC and CE when used as cathode	[19]
	1000 ppm NaCl	Coconut shell- biochar/ α - MnO_2	68.4	23.8	19.5% ion removal at 1000 ppm after 120 min	[20]
	824 ppm	CoCO_3O_4 /n-doped CNTs	60.1		85.6% SAC retention after 20 cycles	[21]
MCDI	1000 ppm	Activated carbon	-	90.3	Investigated effect of oil in brackish feedwater	[22]
	600 ppm NaCl	SCBFA-derived biochar	22	95	19 mg g^{-1} SAC retained after 70 cycles	[23]
	10 ppm	Activated carbon	-	99.2	10 $\text{M}\Omega \text{ cm}$ UPW obtainable at 1.5V	[24]
Portable	1500 TDS	Activated carbon	75- 80% ⁺	-	1.89 kWh m^{-3} at 7 L min ⁻¹ , prefers higher flow rates for better CE	

Notes: SAC – salt adsorption capacity, CE – charge efficiency, CNTs – carbon nanotubes, SCBFA – sugarcane bagasse fly ash UPW – ultra-pure water, TDS – total dissolved solids

References

- [1] F. Rego, H. Xiang, Y. Yang, J.L. Ordovás, K. Chong, J. Wang, A. Bridgwater, Investigation of the role of feedstock properties and process conditions on the slow pyrolysis of biomass in a continuous auger reactor, *J. Anal. Appl. Pyrol.* 161 (2022) 105378.
- [2] K.B. Cantrell, P.G. Hunt, M. Uchimiya, J.M. Novak, K.S. Ro, Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar, *Bioresour. Technol.* 107 (2012) 419-428.
- [3] C. Chang, Z. Liu, P. Li, X. Wang, J. Song, S. Fang, S. Pang, Study on products characteristics from catalytic fast pyrolysis of biomass based on the effects of modified biochars, *Energy* 229 (2021) 120818.
- [4] H. Guo, X. Qin, S. Cheng, B. Xing, D. Jiang, W. Meng, H. Xia, Production of high-quality pyrolysis product by microwave-assisted catalytic pyrolysis of wood waste and application of biochar, *Arab. J. Chem.* 16 (2023) 104961.
- [5] X. Yang, B. Cao, D. Jiang, S. He, C. Yuan, H. Li, S.R. Naqvi, S. Wang, Catalytic pyrolysis of guaiacol on Enteromorpha-based biochar: A combination of experiments and density functional theory, *Fuel Process. Technol.* 239 (2023) 107527.
- [6] A. Funke, F. Ziegler, Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering, *Biofuels, Bioproducts and Biorefining* 4 (2010) 160-177.
- [7] B. Ercan, K. Alper, S. Ucar, S. Karagoz, Comparative studies of hydrochars and biochars produced from lignocellulosic biomass via hydrothermal carbonization, torrefaction and pyrolysis, *J. Energy Inst.* 109 (2023) 101298.
- [8] M. Sevilla, A.B. Fuertes, The production of carbon materials by hydrothermal carbonization of cellulose, *Carbon* 47 (2009) 2281-2289.
- [9] Y. Li, M. Kumar Awasthi, R. Sindhu, P. Binod, Z. Zhang, M.J. Taherzadeh, Biochar preparation and evaluation of its effect in composting mechanism: A review, *Bioresource Technology* 384 (2023) 129329.
- [10] M. Stefaniuk, P. Oleszczuk, Characterization of biochars produced from residues from biogas production, *J. Anal. Appl. Pyrol.* 115 (2015) 157-165.
- [11] J. Lee, X. Yang, S.-H. Cho, J.-K. Kim, S.S. Lee, D.C.W. Tsang, Y.S. Ok, E.E. Kwon, Pyrolysis process of agricultural waste using CO₂ for waste management, energy recovery, and biochar fabrication, *Appl. Energy* 185 (2017) 214-222.
- [12] S. Ren, M. Usman, D.C.W. Tsang, S. O-Thong, I. Angelidaki, X. Zhu, S. Zhang, G. Luo, Hydrochar-facilitated anaerobic digestion: Evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups, *Environ. Sci. Technol.* 54 (2020) 5755-5766.
- [13] N.M.S. Sunyoto, M. Zhu, Z. Zhang, D. Zhang, Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste, *Bioresour. Technol.* 219 (2016) 29-36.
- [14] U. Choe, A.M. Mustafa, H. Lin, J. Xu, K. Sheng, Effect of bamboo hydrochar on anaerobic digestion of fish processing waste for biogas production, *Bioresour. Technol.* 283 (2019) 340-349.
- [15] C. Yin, Y. Shen, R. Yuan, N. Zhu, H. Yuan, Z. Lou, Sludge-based biochar-assisted thermophilic anaerobic digestion of waste-activated sludge in microbial electrolysis cell for methane production, *Bioresour. Technol.* 284 (2019) 315-324.
- [16] J. Zhang, F. Lü, C. Luo, L. Shao, P. He, Humification characterization of biochar and its potential as a composting amendment, *J. Environ. Sci.* 26 (2014) 390-397.
- [17] F. Lü, C. Luo, L. Shao, P. He, Biochar alleviates combined stress of ammonium and acids by firstly enriching *Methanosaeta* and then *Methanosarcina*, *Water Res.* 90 (2016) 34-43.

- [18] P. Li, T. Feng, Z. Song, Y. Tan, W. Luo, Chitin derived biochar for efficient capacitive deionization performance, *RSC Adv.* 10 (2020) 30077-30086.
- [19] B. Li, X. Liu, A. Wang, C. Tan, K. Sun, L. Deng, M. Fan, J. Cui, J. Xue, J. Jiang, D. Yao, Biochar with inherited negative surface charges derived from *Enteromorpha prolifera* as a promising cathode material for capacitive deionization technology, *Desalination* 539 (2022) 115955.
- [20] J. Adorna, M. Borines, V.D. Dang, R.-A. Doong, Coconut shell derived activated biochar–manganese dioxide nanocomposites for high performance capacitive deionization, *Desalination* 492 (2020) 114602.
- [21] X. Hu, X. Min, X. Li, M. Si, L. Liu, J. Zheng, W. Yang, F. Zhao, Co-Co₃O₄ encapsulated in nitrogen-doped carbon nanotubes for capacitive desalination: Effects of nanoconfinement and cobalt speciation, *J. Colloid Interface Sci.* 616 (2022) 389-400.
- [22] Y.-J. Kim, J. Hur, W. Bae, J.-H. Choi, Desalination of brackish water containing oil compound by capacitive deionization process, *Desalination* 253 (2010) 119-123.
- [23] J.J. Lado, R.L. Zornitta, I. Vázquez Rodríguez, K. Malverdi Barcelos, L.A.M. Ruotolo, Sugarcane Biowaste-Derived Biochars as Capacitive Deionization Electrodes for Brackish Water Desalination and Water-Softening Applications, *ACS Sustain. Chem. Eng.* 7 (2019) 18992-19004.
- [24] J.-H. Lee, J.-H. Choi, The production of ultrapure water by membrane capacitive deionization (MCDI) technology, *J. Membr. Sci.* 409-410 (2012) 251-256.