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SUPPLEMENTARY DATA

Biochar for Pollution Mitigation and Renewable Energy Applications

Table S1. Characteristics, advantages, and disadvantages of the pyrolysis process

toward Sustainability Development

Pyrolysis Characteristics Advantages Disadvantages Ref.
e Long residence
e High yield
e Temperature: e Low energy
e Stable and rigid
300—-700°C product
Slow structure
e Residence time: Hioh _ e Time-consuming [1]
. . 1 orosit
pyrolysis <2s =P g e Feedstock
e Cost-efficient
e Yield of biochar: preparation
e Biomass
35% e Emissions
diversity
release
e Short residence
e Temperature: e Energy
e High carbon
500—1000 °C requirement
Fast content
e Residence time: Hih ' e Low biochar 2,3]
. e High porosit ’
pyrolysis hour-day siP Y yield
e Rapid process
¢ Yield of biochar: e Emission control
e Biomass )
12% requirement
diversity
e The presence of e Short duration
. . e Need
selective catalysts | e Quick heating
catalyst support
e Common and pyrolysis of
) e Cost of catalysts
catalysts: metal the material ( .
. e.g., precious
Catalytic oxides, e Higher energy [4, 5]
rolysis . metals) ’
pyroty mesoporous solid saving
e Technical
catalysts, noble e High-quality )
complexity
metal catalysts, pyrolysis product
) e Feedstock
molecular sieve e Improved the
sensitivity
catalysts, etc. conversion rate



https://www.sciencedirect.com/topics/chemistry/metal-catalyst

Hydrothermal
carbonization

Temperature:
180—300°C
Residence time:

I-16 h

Yield of biochar:

50—-80%

Effective method
It can operate at
low temperatures
High surface
functionality
Potential energy

generation

e Required
pressurized,
expensive (high-
cost), and
complex systems
e Feedstock

limitations
High energy

input

[6-8]




Table S2. The feature characteristics of biochar synthesized in various sources [9]

Feedstocks
Parameters
Aquatic Plant Manure Municipal solid
Protein, Lignocellulose, ' .
' High nutrients
lignocellulose, numerous Heavy metal
) ‘ - (N, P, and K),
Features more inorganic  quantities, broad ‘ ' appearance,
N o more inorganic ‘
compositions, distribution » moisture
compositions.
and water space
Yield biochar High Low High High
Density - Small Middle High
Pore . . Honey-comb  Layers or sheets
High porosity Long structure
morphology structure structure
Cation
exchange Low High Low Low
capacity
pH value Rising with high temperature
Specific surface '
Low High Low Low

arca

Porosity

400-700 °C ranges have high lignin — low ash compositions and

outstanding porosity.

Rising with high temperature as temperature < 800 °C




Table S3. Physiochemical characterizations of various biochars

Feedstocks

Digestate
Pepper stalk

Sewage

sludge

Pine

sawdust
Bamboo

Activated

sludge
Rice husk

Fruitwood

Temp
“°C)

400

600

300

650

200

500

600

900

Physical Chemical

Electrical SSA Pore Ash

conductivity size pH C/N O/C H/C
(m2 g1 (%)

(dS m!) ) (nm)
4.5 4 10 10.6 235 023 0.68 28.7
0.16 71.3 3.2 10.8 329 0.09 032 10.6
- 57.7 - 65 8 0.19 0.12 -
- 130 - 9.6 260 - 0.05 -
- 9.3 148 518 133 0.67 0.11 0.95
0.47 41.8 - 801 549 - 0.07 66.5
- - - 945 774 026 0.61 27.6
- - - 8.63 208 0.07 047 549

Ref.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]




Table S4. Capacitive deionization performance of biochar-based materials under different

CDI architectures.

Architecture Concentration Material SAC CE Remarks Ref.
(mg/g) (%)
Traditional 160 uS cm™'  Chitin-derived 11.4 872 26.5mgg!lat500puS [18]
NaCl biochar cm’!
10 mM NaCl Algae-derived 8.7 75 Higher SAC and CE [19]
biochar when used as cathode
1000 ppm Coconut shell- 68.4 23.8 19.5% ionremoval at  [20]
NaCl biochar/a- 1000 ppm after 120
MnO, min
824 ppm CoCO;04n-  60.1 85.6% SAC retention  [21]
doped CNTs after 20 cycles
MCDI 1000 ppm Activated - 90.3 Investigated effect of  [22]
carbon oil in brackish
feedwater
600 ppm SCBFA- 22 95 19 mg g'! SAC [23]
NaCl derived retained after 70
biochar cycles
10 ppm Activated - 99.2 10 MQ cm UPW [24]
carbon obtainable at 1.5V
Portable 1500 TDS Activated 75- - 1.89 kWhm3at7L
carbon 80%" min!, prefers higher

flow rates for better

CE

Notes: SAC — salt adsorption capacity, CE — charge efficiency, CNTs — carbon nanotubes,

SCBFA — sugarcane bagasse fly ash UPW — ultra-pure water, TDS — total dissolved solids
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